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Abstract

In this paper, we present a novel method for in-situ 3D sketching of polyhedral scenes. A video camera is used as

both an interaction and a tracking device, which makes the system particularly suitable for handheld devices such

as PDAs and mobile phones. The efficiency and accuracy of the method are demonstrated using a miniature scene

and a real outdoor scene.

Categories and Subject Descriptors (according to ACM CCS): Artificial Intelligence [I.2.10]: Vision and Scene
Understanding—Modeling and recovery of physical attributes Computer Graphics [I.3.6]: Methodology and
Techniques—Interaction techniques

1. Introduction

Acquiring the 3D geometry of arbitrary scenes has been a
primary objective of both the computer vision and graph-
ics communities for many decades. Applications are numer-
ous in various domains such as construction, geographic in-
formation systems, robotics and augmented reality (AR).
Existing modeling methods usually rely on two separate
stages: first some data about the scene (photographs, videos,
physical measurements, laser scanners, ...) are acquired on-
site. Then these data are treated off-line using some spe-
cific manipulations and algorithms (e.g. [HDT∗07]). Unfor-
tunately, this process has two drawbacks: first, some of the
involved tasks (data acquisition and/or geometry extraction
from these data) can be very tedious. Secondly, it is not guar-
anteed that the desired structure is fully extractable from the
acquired data and additional acquisitions are sometimes re-
quired in order to supplement the missing parts. In this paper,
we propose to bridge the gap between data acquisition and
their exploitation. We describe a purely image-based system
for in-situ 3D sketching of polyhedral scenes. The built parts
of the scene are immediately shown superimposed on the
environment, which allows the user to verify the geometry
against the physical world in real-time.

In-situ modeling has been introduced in [PT01] under the
name of “construction at a distance”. The principle is to al-
low mobile AR users to capture planar shaped objects from

the physical world using simple 3D primitives and construc-
tive solid geometry. The user interacts with the computer us-
ing a set of pinch gloves and hand tracking and the cam-
era is tracked using an inertial sensor and a GPS; this sys-
tem thus requires several special equipments and devices
and is only suitable for outdoor use. By contrast, a purely
image-based interactive model building system has recently
been proposed in [BMC08]. This work has several com-
mon aspects with our work, such as the use of a camera-
mouse and model-based tracking. However, the modeling
task is less constrained in our system in that it does not re-
quire any initial template to be placed in the scene, nor that
the current model partly stays in the camera field of view
while new structures are added. Moreover, defining a vertex
in [BMC08] is based on parallax motion which is not well
appropriate for modeling objects far from the camera.

Finally, our system can be seen as an immersive ver-
sion of the widely used 3D drawing software Google
SketchUpTM (http://sketchup.google.com), whose principles
are described e.g. in [OSD05]. This tool combines some of
the features of pencil-and-paper sketching and some of the
features of CAD systems to provide a lightweight, gesture-
based interface for 3D polyhedral modeling. In the latest re-
leases of SketchUp, the user is able to align the world axes
to match a photo perspective. With this done, he can create
models using the photo as a direct reference; mouse strokes

c© The Eurographics Association 2010.

in
ria

-0
04

74
32

4,
 v

er
si

on
 1

 - 
7 

Ju
n 

20
10

Author manuscript, published in "31st Annual Conference of the European Association for Computer Graphics - Eurographics
2010 (2010)"

http://hal.inria.fr/inria-00474324/fr/
http://hal.archives-ouvertes.fr


Gilles SIMON / In-Situ 3D Sketching

Figure 1: 3-DOF camera rotations (in modeling mode) al-

ternate with 6-DOF camera motions (in tracking mode).

Thick lines represent the modeled faces of the scene.

are converted into 3D-space using inverse ray intersections
with the previously defined geometry (or the ground plane
by default). All these principles have been taken up in our
implementation, but with the important difference that we
consider dynamic video images instead of static ones. More-
over, the video camera is used as the interaction device in-
stead of a mouse, which makes our system particularly suit-
able for mobile devices such as PDAs, wearable computers
and mobile phones.

The system alternates between two modes of opera-
tions (Fig. 1):

Modeling mode. Pure rotations are applied to the camera,
e.g. when using a head-mounted display, this amounts to
look around the scene by only turning the head. Using
the camera as an interaction device, the user is able both
to calibrate the camera and to define the scene geometry
(section 2). It must be noticed that this mode may be used
alone, providing already interesting contributions to clas-
sical single view metrology, as (i) by turning the head the
reachable field of view is much larger than the camera’s
field of view and (ii) mouse manipulations are replaced by
camera manipulations, which can be of great interest in a
mobile context.

Tracking mode. When at least one face of the scene has
been described and the camera undergoes a general mo-
tion, a 6-DOF (degrees of freedom) camera tracking is
performed, based on the available geometry (section 3).
This allows the user to get closer to some parts of the
scene or make some new faces visible before continuing
modeling. In this mode, the geometry previously modeled
has to stay (at least partly) visible in the camera field of
view, which is not required in modeling mode. A pose re-
covery procedure based on SIFT features can be called
upon user request or each time a tracking failure is de-
tected by the system.

The system starts in modeling mode. Once a 3D geometry
has been initialized, switches between modeling and track-
ing modes are done automatically, depending on the motion
applied to the camera (Akaike’s motion model selection is
used [VBS03]).

Figure 2: Equivalence between moving cursor / fixed cam-

era (left) and fixed cursor / moving camera (right).

2. Modeling Interactions

A key idea of this work is that user interactions can be done
using the video camera itself. Indeed, let us consider that the
user wants to draw a line stroke on a video image between
two physical points A and B of a real-world scene; there are
two possible ways to do this (Fig. 2) : (i) the camera stays
fixed and a mouse is used to move a cursor to the two respec-
tive endpoints; (ii) the camera is rotated so that the physical
points apparently move to a fixed cursor, for instance at the
center of the image. The second solution, which is used in
our implementation, does not require mouse support. How-
ever, the position of point A has to be updated from frame
to frame while point B is aimed at. Fortunately, camera rota-
tions only induce homographic deformations of the image,
that can be computed easily e.g. using keypoint matches.
In both cases a click has to be done when the cursor (or
the camera) is correctly positioned. In the second solution,
mouse clicks can be replaced by key presses or any other
input controls such as buttons, voice commands, etc. In our
system, only three keys are used for all operations: one to
“click” or “drag and drop” in the image, a second to cancel
the current operation or request a pose recovery and a third
to scroll the tools menu.

Before being able to model the scene, the user has to cal-
ibrate the camera: this is done by indicating two sets of hor-
izontal parallel lines orthogonal to each other (Fig. 3, frame
a). In addition, the user can drag and drop the origin of the
world frame, providing a ray of possible 3D positions of that
point. The depth of the origin is chosen so that the unit up
vector has an arbitrary size in the image plane. The user can
also change the scale of the scene by moving the extremity of
the unit up vector. Once the camera parameters are known,
the user can start modeling. New faces are instantiated in
contact with existing faces or the ground plane by default.
Contacts are guaranteed by snapping the clicked points to
existing 3D points which appear in a specific color when
close to the cursor: yellow for a face vertex, blue for the
middle of an edge and red for the closest point on an edge.
Faces under the cursor are also specifically outlined and new
3D vertices can be generated by using inverse ray intersec-
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Figure 3: Snapshots of the system in use.

tion. In addition, most actions are guided using a line stroke,
which itself can be snapped to the projected world axes.

Six different tools have been implemented which are sum-
marized in Tab. 1. Fig. 3 illustrates how a simple house can
be modeled using the Add, Extrude, Cut and Move tools:
a rectangular face is first created using two line strokes AB
and BC: according to the priority rules described at bottom
of Tab. 1, AB is instantiated in the ground plane and par-
allel to the red axis (frame b); the vertex C is dragged in
the plane orthogonal to AB (frame c) and finally such that
BC is aligned with the blue axis (frame d); the new face is
extruded forming a box and the top face of this box is sub-
divided so that the cut line joins the middles of two opposite
edges (frame e); finally, the cut line is moved along the blue
axis in order to form the roof (frame f).

Add a rectangular face by clicking three points A,B,C(∗) . The rectangle is gen-
erated in the plane ABC using A and C as diagonally opposite vertices.

Extract texture and SIFT features from the selected face.

Extrude the selected face.

Move the selected vertex, edge or face.

Subdivide the selected face by joining two of its vertices.

Delete the selected face.

(∗) The inverse ray intersection priorities are: A: selected vertex > selected face > ground;

B: selected vertex > projected world axis ‖ AB > plane(A);C: selected vertex > projected

world axis ‖ BC > plane⊥ [AB]

Table 1: Modeling tools used in our prototype.

3. Camera Tracking

Camera poses are computed using image content only
and the modeled planar polygons [VBS03]: Harris corners
are matched from frame to frame using normalized cross-
correlation of patches in a search window; these corners are

detected in the whole image for a 3-DOF tracking or inside
the projected faces of the model for a 6-DOF tracking; out-
lier matches are rejected using a RANSAC computation of
the planar homographies that best fit the sets of corners be-
tween the subsequent views; finally, the camera pose is com-
puted by iteratively minimizing the sum of squared transfer
errors (SSTE) of the inlier matches, using the homographies
induced by the pose parameters and the equations of the in-
volved planes.

This procedure is fast and robust but has two drawbacks:
first, due to the recursive nature of the algorithm, errors in-
duced by noise (e.g. in corner detection) accumulate over
time. Secondly, as the size of the search window has to be
bounded both to reduce matching ambiguities and to achieve
real-time, camera tracking may fail in case of fast motions.
To tackle the first problem, we use the texture informa-
tion extracted by the user during the modeling mode. Like
in [RD06], the current textured model is rendered from the
current pose using the OpenGL graphic engine. Harris cor-
ners are detected in the rendered view and matched with the
Harris corners of the current frame. These matches, which
are merged with the set of matches obtained in the previous
video frame, tend to reduce the drift. For performance issues,
this correction procedure can be called only every k frames
(k = 2 in our implementation).

Tracking failures are detected automatically by testing
whether the number of inlier matches falls under a threshold.
The user is also able to manually require for pose recovery
when he visually estimates that it is necessary. Pose recovery
is basically based on SIFT feature matching [Low04]. SIFT
features have a higher computational cost than Harris cor-
ners but are invariant to image scale and rotation and robust
to some extend to change in viewpoint. When the "Extract
texture" tool is used, SIFT features are extracted inside the
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projected faces of the model and stored (in a kd-tree) asso-
ciated with the current pose. When the recovery procedure
is called, the list of textured faces is traversed until one face
gets enough matches with the SIFT features of the current
frame. If one face is found, it is put at the top of the list (so
that it will be evaluated first at the next tracking failure) and a
rough estimate of the current pose is obtained by minimizing
the SSTE of the inlier matches. This rough pose is then used
to render an image of the textured model and the correction
procedure is called.

The recovery procedure slightly differs in modeling
mode: when the system enters this mode, an initial set of
SIFT features is detected in the whole image. These features
are transferred from frame to frame using the RANSAC-
estimated homographies. The image is subdivided into a 3x3
grid; when one square of the grid is empty after the SIFT fea-
tures have been transferred, new SIFT features are detected
inside this square and added to the current set of SIFT fea-
tures (see the outdoor video). When a tracking failure occurs,
SIFT features are detected in the current image and matched
with the current set of SIFT features.

4. Experiments

All experiments were performed using a Dell Precision
M6300 laptop coupled with a simple Logitech webcam. The
system runs at video rate in standard mode and 2 to 6Hz
when the recovery procedure is called. Two videos are as-
sociated with this paper, showing the system in action. A
miniature scene is used to assess the accuracy of the method.
Several modeling and tracking sequences alternate during
the working session (Fig. 3). It can be distinguished in the
video between when the system is running in modeling mode
and when it is running in tracking mode, as the cross cursor
disappears in the second case. Fig. 4 shows the errors ob-
tained on the recovered 3D geometry (scaled so that the re-
covered distance d1 is equal to the expected distance). These
errors are acceptable for many applications: for instance, to
prove that the recovered model is suitable to perform AR, we
added a seventh tool to our platform, enabling the user to add
virtual objects under the camera cursor. The added objects
appear rigidly anchored in the scene, even for a large range
of distances from the camera to the scene (Fig. 3, frames
g,h).

A(mm) ∆(mm) ∆/A(%)
d1 61 Ref Ref
d2 88 -0.3 -0.3
d3 38 1.5 3.9
d4 92 4.2 4.6
d5 75 -5.2 -6.9
d6 34 -1.3 -3.8
d7 139 -8.4 -6.0
d8 21 0.8 3.8
d9 95 -4.0 -4.2

Figure 4: Recovered geometry with actual distances A (mm),

absolute errors ∆ (mm) and relative errors ∆/A (%).

The modeling mode is also illustrated using a real outdoor
scene (an athletism stadiumwith a changing house). The first
part of the video shows how the set of SIFT features is ex-
panded. Several abrupt motions are done, requiring the re-
covery procedure to be called. The camera is then calibrated
and some modeling operations are performed before a bill-
board is added along the track (Fig. 5).

Figure 5: One snapshot of the outdoor sequence.

5. Conclusion

In this paper, we have proved that in-situ modeling is possi-
ble using a standard webcam as only device. The system can
be improved in several ways. For instance, including edge
features to the tracking algorithm [RD06] would help to han-
dle such scenes like the athletism stadium where little tex-
ture information appears. Localization in larger areas would
also require to make the recovery procedure more scalable
and efficient. Such techniques like the Potentially Visible
Sets [AWK∗09] may be useful for that purpose.
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