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Abstract

Surgery rooms are complex environments where many inter-
actions take place between staff members and the electronic
and mechanical systems. In spite of their inherent complex-
ity, surgeries of the same kind bear numerous similarities and
are usually performed with similar workflows. This gives the
possibility to design support systems in the Operating Room
(OR), whose applicability range from easy tasks such as the
activation of OR lights and calling the next patient, to more
complex ones such as context-sensitive user interfaces or au-
tomatic reporting. An essential feature when designing such
systems, is the ability for on-line recognition of what is hap-
pening inside the OR, based on recorded signals.
In this paper, we present an approach using signals from the
OR and Hidden Markov Models to recognize on-line the sur-
gical steps performed by the surgeon during a laparoscopic
surgery. We also explain how the system can be deployed
in the OR. Experiments are presented using 11 real surgeries
performed by different surgeons in several ORs, recorded at
our partner hospital.
We believe that similar systems will quickly develop in the
near future in order to efficiently support surgeons, trainees
and the medical staff in general, as well as to improve admin-
istrative tasks like scheduling within hospitals.

Introduction
The surgery room is a crucial unit within the hospital, where
many changes have been predicted to occur in the next years
(Cleary, Chung, & Mun 2005). While many different high-
end technologies are made available to the surgeon, they are
up to now neither connected to a common interface nor do
they include any complete monitoring system. With the in-
crease and improvements of minimally invasive surgeries,
that rely on new tools and new imaging technologies, many
electronic signals are however made easily available. They
could be used for the design of a system that is aware of
the surgical context. It could recognize from these signals
what is occurring in the operating room (OR) and use this
information to automatically write a report at the end of the
surgery, present a context sensitive user interface and trigger
simple events or reminders, like calling the next patient or
switching on and off the lights. These two last actions are
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often a source of hassle in busy ORs. Calling the next pa-
tient in time is also a huge healthcare issue, since, if done
too soon, the next patient will stay longer anaesthetized as
needed. If done too late, the OR will remain unused for some
time. Furthermore, providing contextual information to the
surgical staff, for example which tools need to be prepared
next, would also be particularly valuable for trainees or new
personnels. A context-aware system could therefore bring
clear benefits to the OR. But additionally, it would also im-
prove the overall workflow of the hospital as the information
can be made available to the administration, for scheduling
or computing overall statistics.

While surgeries are complex operations, surgeries of the
same kind are often performed with a similar and repro-
ducible workflow. A system can therefore be trained from
surgeries of the same kind. This is especially relevant as the
standardization of the workflow and the specialization of the
ORs to certain kind of surgeries have been identified as an
important source of improvement to the hospital efficiency
(Herfarth 2003).

We present in this paper an approach for monitoring la-
paroscopic surgeries, which belong to the most common
minimally invasive procedures. They are performed using
tools inserted through small incisions in the patients’ body,
with one incision reserved for the laparoscope, a camera ob-
serving the operating field. Compared to open surgery, this
results in reduced patient trauma, shortened hospitalization
and decreased risk. On the other side, the field of view of the
surgeon is reduced, the operation lasts longer and emergency
cases are more complicated to handle. The huge advantage
of laparoscopic surgeries for a monitoring system is the us-
age of many electronic systems, which can easily provide
signals about the surgical actions without having to change
the workflow or to install complex tracking systems.

We explain in the following how to process information
from the used tool and from the endoscopic camera to detect
on-line which phase of 14 surgical phases is taking place.
The method uses a left-right Hidden Markov Model (HMM)
and is evaluated on the example of the laparoscopic chole-
cystectomy. A cross-validation on 11 real surgeries shows
an on-line detection rate of 93%. We further discuss its de-
ployment in the OR and a few useful applications, like trig-
gering easy events and predicting the remaining time of the
surgery.



Related Work
Interest in workflow analysis inside the OR is recent. Most
works either focus on the manual modeling of the interac-
tions during the surgery or on the analysis of single move-
ments.

(Jannin et al. 2001; Neumuth et al. 2006) address the un-
derstanding of a complete surgical workflow through man-
ual modeling with the Unified Modeling Language (UML)
or ontologies. Up to now the models are not related to real
signals from the surgeries. It therefore allows off-line statis-
tical analysis, but no monitoring. Surgical movements anal-
ysis is also of high interest, as it can be used for an objective
evaluation of the surgical skills and for training. In (Rosen
et al. 2006) and (Leong et al. 2006), force/torque or track-
ing information from endoscopic instruments is used to train
Hidden Markov Models representing different surgical skill
levels. They focus on a specific action performed on a sim-
ulator. In (Lin et al. 2005), a method to segment the steps
of a knotting movement is presented. It uses data obtained
from a robotic telemanipulator applied on a phantom and
also serves for the evaluation of the performance.

Recognition of several events occuring in endoscopy has
been adressed in (Lo, Darzi, & Yang 2003): visual cues from
endoscopic images and a bayesian framework are used to
classify four events including cauterisation and suturing. A
further step is taken by (James et al. 2007), where infor-
mation from an eye-gaze tracking system is combined with
visual features in a neural network to detect one phase of a
cholecystectomy performed on pigs, namely the clipping of
the cystic duct.

With the objective to analyse the occupancy of the OR,
(Bhatia et al. 2007) process external video information with
Support Vector Machines and a 4-state HMM to classify the
room occupancy into four elementary states. Eventhough
the proposed method could be used on-line, only segmen-
tation results using information from the complete data se-
quence are presented. Our approach use additional signals to
be able to get more insight into the workflow and to monitor
on-line the surgery.

Outside the hospital, many complex systems, often in-
volving graphical models, have been proposed for the recog-
nition of human activities, usually using continuous data
from various sensors. (Oliver, Garg, & Horvitz 2004) pro-
pose for instance layered HMMs for real-time activity recog-
nition in an office environment. (Shi et al. 2004) presented
an approach to recognize concurrent activities, demonstrated
on the monitoring of a blood glucose calibration system for
elderly people at home.

In previous works of the authors (Padoy et al. 2007b;
2007a), a subset of the presented signals, where no auto-
matic information from the endoscopic camera is involved,
was used with a modified version of the Dynamic Time
Warping algorithm or with 14-state HMMs to segment
off-line the surgeries. To the best of our knowledge, there
is no published work addressing the on-line recognition of
surgical tasks during a complete surgery. A major difference
to the related works cited above is the nature and the little
amount of training data that can usually be obtained.

(a) Laparoscopic environment, with instrument table
and video monitor.

(b) Dissection and suction-irrigation devices, as seen
from the optics.

Figure 1: Instruments within external and endoscopic views
from the surgical field.

Medical application
While the method can be applied to any laparoscopic surgery
and to other surgeries where a way to acquire signals is avail-
able, we focus for the experiments on laparoscopic cholecys-
tectomy. This is a common but complex surgery performed
laparoscopically in 95% of the cases, with a low conversion
rate to open surgery. It is therefore convenient for the record-
ing of the signals as well as for the demonstration of the
method. The objective of cholecystectomy is to remove the
gallbladder. It starts with the positioning of trocars on the
patient, for insertion of the instruments inside the body, and
finishes with their removal and the suturing of the induced
holes. The most important intermediate steps are the dissec-
tion, clipping and cutting of the bile duct and of the cystic
artery. The gallbladder is then separated from the liver and
removed using a retraction sac. For it to pass through the
endoscopic hole, the gallstones that caused the operation are
removed one by one from it beforehand. This is followed by
a final control phase of the abdominal area and the removal
of all instruments. A view of the OR during such a surgery is
shown in figure 1(a). All the worksteps from the insertion of
the trocars till the suturing are displayed in table 1 and will
be used for the evaluation. Two simple examples of events



1 CO2 Inflation 8 Liver Bed Coagulation 1
2 Trocar Insertion 9 Gallbladder Packaging
3 Dissection Phase 1 10 External Retraction
4 Clipping Cutting 1 11 External Cleaning
5 Dissection Phase 2 12 Liver Bed Coagulation 2
6 Clipping Cutting 2 13 Trocar Retraction
7 Gallbladder Detaching 14 Abdominal Suturing

Table 1: The fourteen phases used in the on-line detection.

to be triggered in this surgery are calling the next patient in
phase 7 or switching on the lights in phase 10.

Methods
Signals
For monitoring, the signals recorded from the OR at a reso-
lution of one second are represented by a multidimensional
time-series O where Ot ∈ {0, 1}K :

Ot,k = 1 iff signal k is active at time t

These binary vectors contain two kinds of signals. In the
K = 18 signals available, 16 of them indicate what instru-
ments are used in the surgery. The remaining two signals are
derived automatically from the view of the endoscopic cam-
era. Its images are however very challenging for vision algo-
rithms as many perturbations occur, such as strong specular-
ities, appearance of smoke, tissue deformations, occlusions
and fast change of field of view. The first signal indicates
whether the camera is present in the body and the second
if clips were detected in the field of view. Signals for one
surgery are displayed in figure 3.

Instrument signals These signals indicate which endo-
scopic tools are used at each time. They include the tro-
cars and instruments such as the grasper, the cutting device
or the high-frequency coagulation device, which are all dis-
played in figure 3. For this work, they were labeled manually
because of administrative issues. It is however technically
possible to obtain them automatically. This issue is further
adressed in the discussion section.

Endoscopic camera signal As can be guessed from fig-
ures 1(a) and 1(b), colors are a main cue to obtain the state
of the endoscopic camera. Since cameras with different set-
tings are used, a color normalization (Paulus, Csink, & Nie-
mann 1998) is performed on the images beforehand, which
proved to improve the results. We used a small color his-
togram of size 20 as visual feature. The first 10 contain a
hue histogram and the last 10 a saturation histogram of the
image. Based on labelled images from training surgeries,
two Gaussian Mixture Models (GMMs) Gendo and Gout are
trained to model the color spaces of endoscopic images and
outside images. The training consists in an initialization
with principal component analysis followed by Expectation
Maximization (EM) iterations. An image is classified as en-
doscopic when the probability of its histogram to belong to

Gendo is higher than for Gout. Evaluation based on a few
manually labelled complete surgeries provides a success rate
of 92%.

Two kinds of images are difficult in the evaluation: the
images where the camera is half inserted and as much of the
metallic trocar can be seen as of the internal anatomy, and
the images where the camera is entirely inside the abdomen
but fully blinded by specularity due to its proximity to the
tissue.

Clip detection signal Clips are small longitudinal metal
objects used to close the blood vessels. In all the surgeries
we recorded, dark blue clips are used, sometimes with addi-
tional stronger grey clips. To detect the blue metallic clips,
we use color classification with a similar approach as be-
fore followed by few morphologic operations and a deci-
sion based on shape properties. Two GMMs Gclips and Gbg

modeling the colors of the clips and of the endoscopic back-
ground are constructed based on a few training images seg-
mented manually. They are used in a first step to classify the
image pixels into clip and background. After morphological
closing operations, the connected components are selected
to be clips depending on two properties: sufficient size and
longitudinal shape. When the endoscopic camera is detected
to be in the body and such a connected component is found,
the clip signal is set as active. Note here, that wrong pos-
itives in the detection are more an issue than wrong nega-
tives. Indeed, detected clips before their introduction in the
body give a wrong indication about the possible phase. It
however often occurs that clips are small or hidden from the
field of view after their introduction in the body. For this
reason, the criteria are set such that clearly visible clips are
detected, while far or partially hidden clips might not be de-
tected. This reduces the number of wrong positives, which
may occur as the dark blue clips have a close color to coagu-
lated tissues and smoke and are also sensitive to specularities
and reflections. The recognition model appeared however
to cope with these wrong detections. The evaluation is not
easy, as manual labeling of the clips is tedious and has to be
done image per image, contrary to the instruments for which
we only consider the presence in the body, not in the field of
view. On a few manually labeled surgeries, where also far
and hardly visible clips were noted as present, the detection
rate is 76%.

On-line segmentation model
As most signals get activated in several different phases,
sometimes even differently by different surgeons, the phases
cannot be recognized simply from the signals. This requires
a learning algorithm including a temporal model.
In order to detect on-line which surgical phase is taking
place, we represent the surgery as a stochastic process using
a left-right hidden markov model. The model is constructed
from signals Ol

t,k, where l ∈ 1 . . . L and L is the number of
surgeries available in the training set. For each surgery l in
the training set and for each time t, the phase T (Ol, t) that
was taking place at that time is supposed to be known.

Supposing now Otest
t,k are the signals from a new surgery



that has to be monitored, the objective is to compute
T (Otest, t) at each time step t while knowing only the par-
tial signals Otest

1 . . .Otest
t up to the actual time.

For this, a suitable Hidden Markov Model (Rabiner 1989)
with parameters λ is constructed. A discrete Hidden Markov
Model is a quintuplet (N,M, A,B, π) where N is the num-
ber of states (xi)1≤i≤N in the model, M the size of the ob-
servation alphabet, A the transition probability matrix be-
tween the states, B the observation probability matrix and π
a probability distribution over the initial states. Our model
λ is constructed out of models that each represent one phase
of the surgery. We first present how to use the model λ for
monitoring. Its construction is explained in the next para-
graph.

We are looking for

Ttest(t) = T (Otest, t)
= argmax

u
P (phase = u|Otest

1 . . .Otest
t )

Supposing we know from the construction of the model
the probabilities P (phase = u|X = x) of being in phase u
while being in the HMM state x, we have

Ttest(t) = argmax
u

∑
xi

P (phase = u | Xt = xi)×

P (Xt = xi | Otest
1 . . .Otest

t )

where P (Xt = xi|Otest
1 . . .Otest

t ) can be computed from
the so-called forward probabilities using dynamic program-
ming.

Model construction
In this paragraph, we explain the construction of λ and
P (phase = u|X = x). For each phase u a HMM with pa-
rameters λu is constructed out of the corresponding training
data. The training data are made up of all subsequences of
signals belonging to the phase u from each training surgery:
Ol

t,k where T (Ol, t) = u. These models λu are then ap-
pended to each other as in figure 2.

There exist numerous works on how to learn and train the
parameters of an HMM. As very little training data is avail-
able, we take benefit from the discrete case and from the
linear course of actions to model the phase as a left-right
HMM that can this way be directly initialized from the data.
As rule of the thumb, we choose the number of states to be
the square root

√
E
2 where E is the mean phase duration

calculated from the training data. It performs better than
choosing any constant, but other classical rules for model
selection like ( E

log(E) )
1
3 perform equivalently well on this

data.
The sub-models are trained by dividing each sequence of

the training data into equal subsequences and by assigning
them to the respective state of the submodel. The transition
probabilities are then set such that the expected duration of
staying in one state equals the mean duration of the subse-
quences assigned to the state. The observation probabilities
are directly learned from these subsequences. The obser-
vation distribution is choosen to be the frequency of occur-
rences, while allowing a small probability for an unknown

Figure 2: Example of appended HMMs.
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Figure 3: Temporal sequence of signal vectors for one
surgery, with indication of the 14 phases.

observation. Assuming signals to be independent in the ob-
servation distribution has shown to yield equivalent results.

When the HMMs λu are appended, the last state of λu is
modified to have a transition to the first state of λu+1. The
probability is chosen so that the expected time in the phase
model equals the mean duration of the phase, computed
from the training data. The function P (phase = u|X =
x, λ) is then defined to be 1 for all states x from λ that were
appended from the submodel of phase u and to be 0 for the
others. The initial probability distribution is initialized for
the HMM to start in its first state.

It is possible to refine the resulting model λ with the Ex-
pectation Maximization algorithm and to update the function
P (phase = u|X = x, λ) accordingly at the same time. We
however choose not to do it, as it sometimes worsen the re-
sults. The reason is that very short phases with observations
also appearing in the neighbouring phases tend during the
EM steps to be absorbed by the neighbouring ones, as they
are modeled by a few states. This also comes from the fact
that we are interested in the phase segmentation when we
construct the model, which is not directly correlated to the
log-likelihood of the training data that is optimized by the
EM.

Experiments and Results
Recording Setup
We recorded video information from 11 real surgeries, per-
formed by three different surgeons in several operating
rooms of the same hospital. An external video including sur-
gical staff, instrument table and situs, as well as the view of
the endoscopic camera were recorded synchronously during



these surgeries.
The usage of laparoscopic instruments is, at the moment,

derived manually from the video data using a labeling soft-
ware. So far, they cannot be obtained automatically from
the videos without human knowledge, since the laparoscopic
tools look very similar and can only be distinguished by their
tooltips which are very small. Moreover, many occlusions
and strong illumination changes occur in the external video,
due to personnal movements and to the status of the OR
lights. In the laparoscopic video, in addition to the afore-
mentioned pertubations occuring in the images, not all the
instruments are present in the field on view. Automatic tool
identification is however technically possible, as addressed
in the discussion section.

Results
The method is evaluated using a full cross-validation on the
data: the framework is trained on each available subset of 10
surgeries and evaluated on the remaining one. The objective
being the on-line recognition of the surgical phases, we use
three kinds of errors:
• overall classification error - percentage of wrong detec-

tions compared to ground truth information in the com-
plete surgery

• mean error per phase - mean between the percentages
of wrong detections inside each phase

• number of skipped phases - number of phases that were
completely detected as another phase
While computing the errors, a tolerance of 5 seconds be-

fore and after the ground truth definition of the phase is set.
It is required as phase changes are defined at changes of in-
struments, but in practice instrument change (removing the
past instrument from the trocar, grasping the next one from
the scrub nurse and inserting it in the trocar) takes in aver-
age 10 seconds. Moreover, detection errors inside a phase
are more important than at the loose border.

Results of the cross-validation are displayed in table 2.
Each row shows the mean errors of the cross-validation tests
for a different HMM. The model λ computed as explained
in the method section has the lowest errors. For compar-
ison, the errors computed with the model λ(1) where only
one state per phase is used, or λ(2) with two states per phase,
are also displayed.
In table 3, we compare the results when no information from
vision is considered. It shows as expected that using au-
tomatic information extracted from the endoscopic images
does improve the results. For instance, since the camera is
present in the body when the surgeon operates with the tools,
but is also removed for cleaning as soon its view gets ob-
scured, it can indicate whether the surgeon is working inside
or outside the body or whether the phase contains blood.

Additionally, figure 4 shows the mean and standard devi-
ation (std) per phase computed from the errors in the cross-
validation tests. The model λ shows lower errors per phase,
but also lower standard deviations compared to models with
a fixed number of states per phase.

This also shows that the phases can be detected on-line.
Higher errors occur for phases 5, 9 and 13. It comes from
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Figure 4: Error per phase: mean over the cross-validation
tests, for models λ and λ(1). The length of the vertical lines
above the bars indicate the standard deviation.

the fact that these phases are performed very shortly in some
surgeries, depending on the patient anatomy or on the sur-
geon. When it happens, a few seconds of wrong detection
yields a high error, 100% in case the complete short phase
is not detected. If all the phases are important for a context-
aware supporting system, for instance to indicate the next in-
trument to hand in, phases 7 and 10 are crucial for a simple
demonstration of the system to the surgeons. Indeed, calling
the next patient is usually done at the beginning of phase 7,
while switching on the light always occurs at the beginning
of phase 10. Both of them are fortunately detected reliably.

Another direct application of the system is the prediction
of the remaining time of the surgery, for instance to pre-
pare the next patient and to gather the staff involved. It can
be computed from the transition probabilities of the HMMs,
using the computation of the most probable state at time t.
Figure 5 shows the errors in the time prediction within each
phase. They are computed for each second and averaged
within each phase. The figure shows the mean and std of
these values on all the cross-validation tests. As expected,
the errors decrease when the surgery comes to its end. The
mean prediction error is below 10mn from the phase 6 on,
and it starts to be completely reliable in phase 10. More
precise time prediction should take patient anatomy into ac-
count, as the obesity or the gallbladder size play an impor-



overall(%) mean per phase(%) skipped
λ 7.6 6.7 0.3

λ(1) 15.8 13.3 0.4
λ(2) 12.6 10.0 0.4

Table 2: Comparison of errors for HMMs λ,λ(1) and λ(2).

overall(%) mean per phase(%) skipped
all signals 7.6 6.7 0.3
no vision 11.5 10.4 0.7

Table 3: Comparison of errors using model λ when includ-
ing the visual features or not.

tant role. However, in its present form the system is reliable
enough to warn automatically in phase 10 the staff that is
supposed to be present for the next surgery. For comparison
purposes, the mean of the durations of the 11 surgeries is
48mn, the standard deviation 14mn.

An illustrative video showing in accelerated speed a
full surgery (see figure 6), including the endoscopic
view, the external view, some signals, the phase de-
tection as well as the triggered events, is available at
http://campar.in.tum.de/files/publications/MonitoringIAAI08.avi

Discussion
The previous section has demonstrated that on-line recov-
ery of the surgical steps performed by the surgeon is pos-
sible based on the presented binary signals. It can be used
in its present form for a demonstration in the OR. The last
required step to install it in the real environment is of tech-
nical and administrative nature. All the binary signals which
were labeled manually so far, can indeed be obtained auto-
matically.

Signals like high-frequency coagulation and cutting or ir-
rigation can be read directly from the system. If the usage of
other instruments cannot be detected directly by vision be-
cause of the challenges mentionned before, their detection
can be done using barcodes, RFIDs or other markers. The
solution we tend to and which does not modify the workflow,
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Figure 5: Errors in the prediction of the remaining time,
from each phase. Mean and std on the cross-validation tests.

Figure 6: Screenshot of the illustrative video, displaying the
external and internal videos, some signals and monitoring
information.

is the usage of trocars equipped with a sensor that detects in
real time which instrument is inserted or removed. A proto-
type solution is currently under development together with
our medical partner.

Additionally, many other signals could also be used to im-
prove the results, as long as their acquisition does not change
the workflow. For instance the CO2 pressure in the abdomi-
nal cavity, the data from the anaesthesy, the amount of liquid
used to clean the abdominal area, or even the data from the
administrative information system, containing patient infor-
mation and used materials, could be useful and incorporated
into the system. As the nature of the signals would change,
this would bring new challenges, but also allow the detection
of finer events within the surgical workflow.

Conclusion
Contemporary operating rooms are usually equipped with
high-end systems able to provide various signals. All these
signals could principally be used for contextual support dur-
ing the surgery. We have presented a working set of signals
and an approach to monitor laparoscopic surgeries, which
can also be extended to non-minimally invasive surgeries.
The results obtained using 11 real surgeries yield a detection
accuracy of 93% and allow the reliable triggering of a few
useful events. We have also presented our future steps to-
wards the deployment in a real environment, as well as some
relevant applications for the surgeon. Similar systems, using
machine learning techniques to analyse the signals from the
OR, will probably be increasingly developed and applied in
the near future as the ORs tend to become more and more
high-tech. It will allow a stronger context-aware support to
the surgical staff, the detection of anomalies, and a better
administration of the hospital.
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