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ABSTRACT
In this paper1, a framework to acquire and process dynamic data
of the tongue during speech processing is presented. First,a setup
to acquire data of the tongue shape combining ultrasound images,
electromagnetic localization sensors and sound is presented. Tech-
niques to automatically calibrate and synchronize the dataare de-
scribed. A method to extract the tongue shape is then proposed, by
combining a preprocessing of the ultrasound images with an image-
based tracking method that integrates adapted constraints.

1. INTRODUCTION

Being able to build a model of a speaker’s vocal tract and faceis
a major breakthrough in speech research and technology. A vocal
tract representation of a speech signal would be both beneficial from
a theoretical point of view and practically useful in many speech
processing applications (language learning, automatic speech pro-
cessing, speech coding, speech therapy, film industry...).. This re-
quires not only to design an acquisition system but also to define
appropriate image processing techniques to extract the articulators
(tongue, palate, lips...) from the data.

An ideal imaging system should cover the whole vocal tract
(from larynx to lips) and the face, have a sufficient spatial and time
resolution, and not involve any health hazard. At present, no sin-
gle imaging technique answers the above requirements alone: the
dynamics of the tongue can be acquired through ultrasound (US)
imaging [12, 10] with a high frame rate but these 2D images are
very noisy; 3D images of all articulators can be obtained with mag-
netic resonance imaging (MRI) but only for sustained sounds[5],
electromagnetic (EM) sensors enable the investigation of speech ar-
ticulators dynamics for a small number of points of the tongue [11].
Therefore, combining several imaging techniques is necessary. Sev-
eral attempts have been made to acquire multimodal articulatory
data. The HOCUS system [15] combines US imaging together with
infrared emitting diodes placed on the lips and on the probe.In the
HATS system [12], M. Stone used several 2D US acquisitions to
recover a 3D model of the tongue. Using multimodality requires
to perform spatial calibration and temporal synchronization in or-
der to express the data in the same spatio-temporal frame. Though
very important, these aspects are generally either not addressed in
the above mentioned systems or at best manually performed.

The system we foresee will integrate 3D MRI, high-speed
stereo-vision, US imaging and EM sensors to produce 3D+t, i.e.
dynamic, models of the vocal tract. We focus here on the dynamic
part, that US imaging and EM sensor form, to get the tongue shape,
including the apex.

Our contributions in this paper are twofold. First, section2
gives an overview of our US+EM acquisition system. In addition,
fully automatic procedures for spatial calibration and synchroniza-
tion are described. Our second contribution is on the processing
of the articulatory data. We here focused on the processing of US
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images which bring important information on the tongue dynamics.
Despite pioneering efforts conducted by M. Stone [12, 10], there
does not exist any efficient tool to track the tongue shape over US
sequences with sufficient reliability. We thus describe in section 3
efficient pre-processing methods of US images to reduce noise and
to enhance the tongue contours. A complete framework to auto-
matically extract the tongue shape over sequences which takes ad-
vantage of the EM sensors is then described. Significant results are
given in section 4.

2. THE ACQUISITION SYSTEM

2.1 General setup

US imaging provides a continuous tongue shape in the mid-sagittal
plane. However, the air in the sublingual cavity and/or the jaw bone
block the US signal, making the apex invisible in most of the US im-
ages. One EM sensor glued on the apex of the tongue thus provides
point-wise tracking of the extremity of the tongue. A secondEM
sensor glued on the tongue dorsum helps to constrain the location
of the tongue contour in US images.

Our setup relies on a Logiq5 Expert US machine (GE Health-
care) and the Aurora EM system (NDI). The speaker’s voice is
recorded by a microphone connected to a PC. The main charac-
teristics of each modality are summarized in table 2.1. In cine loop
mode, the acquired US images are stored in a video buffer. This
buffer is saved to disk in DICOM format when the user presses a
footswitch at the end of the sequence. The US machine was tuned
to acquire 532×434 pixels images (approx 9 cm× 7 cm) at 66 Hz,
which correspond to a 15 seconds video buffer.

EM US Sound
Acquisition rate 40 Hz 66 Hz 44100 Hz
Recording time unlimited 15 seconds unlimited
File data format text DICOM WAV

Recording process real time cine loop real time

Table 1: Main characteristics of the modalities used in our acquisi-
tion system.

2.2 Synchronization

US images, EM sensor data and sound must be synchronized to
enable data fusion. Fig. 1 depicts the complete acquisitionsystem
together with synchronization add-ons. The system core is acontrol
PC which provides a precise time-line to stamp the various signals:
it sends a stop signal to the US machine to save the video buffer
to disk, thanks to an electronic relay that simulates a footswitch
pressure; it sends timestamped start and stop signals to theAurora
EM system; and it emits beeps at the start and end of the acquisition
to timestamp the sound data.

Sending start and stop signals allows us to measure the ac-
tual acquisition frequency and drastically reduce the temporal shift.
For example, 2% error is common on sound acquisition rate (e.g.
43.2kHz instead of 44.1 kHz). Such an error implies a 300 ms shift
at the end of a 15 seconds acquisition, that is a shift by 20 US im-
ages in our setup.



Figure 1: US+EM system setup.

Experiments were conducted to assess the synchronization ac-
curacy of our setup. The maximum time lapse is below 1 ms for
sound and 25 ms for EM data. Since we had no access granted
to the internals of the US machine, we could only measure the re-
peatability of the time delay between the stop signal and thelast
US frame actually captured. The average delay was measured to be
52 ms, with a standard deviation of 14 ms (approx. 2 US images).
Further details can be found in [1].

2.3 US/EM spatial calibration

The system comprises 2 spatial modalities: EM data and US im-
ages. US images are dependent on the probe position, and therefore
may move along the acquisition. On the other hand, EM sensorsare
located relative to an EM field generator whose position is fixed.
Spatial data fusion thus requires that the US images are expressed
in the fixed EM reference frame. Therefore, the US probe position
is tracked thanks to a 6DOF EM sensor connected to the Aurora
system. The unknown, but fixed, linear relation between the US
image inner reference frame and the 6DOF sensor local reference
frame is calibrated by imaging a calibration fantom under various
probe positions: a wooden stick whose line equation is knownin
the EM frame, and whose intersection with the US image plane is
visible in the US images. Further details can be found in [2].

After calibration, tracking the 6DOF EM sensor becomes
equivalent to tracking the US image plane. This latter planecan
then be positioned with respect to the EM reference frame in real
time during the acquisition. It is thereby possible to checkin real
time that the EM sensors glued on the tongue lie within the US im-
age plane, which is necessary to fuse the acquired data. A warning
for US/EM misalignment was integrated in our system.

Finally, the tongue motion, as seen in US images, may be cor-
rupted by global head motion. Indeed, in our experience, toostrong
head immobilization hampers natural speech utterance overlong
acquisition sessions. Therefore, our system does not include any
head immobilization devices. Instead, the speaker is askedto re-
main still. The head position is corrected for occasional motion
thanks to 2 5DOF EM sensors glued behind the speaker’s ears.

3. TRACKING THE TONGUE SHAPE IN THE US
SEQUENCES

Our goal is to develop automatic tools (or as automatic as possible)
in order to extract the tongue shape in the vast amount of US se-
quences recorded in our corpus. Many works have been devotedto
tracking in the computer vision community. However tracking in
US sequences is well known to be difficult due to the high speckle
noise. There are many other difficulties specific to our application:
(i) the high speed of the tongue for some sounds produces blurred
contours which are difficult to track, (ii) the tongue undergoes high
elastic deformations (ii) the apex is often not visible as the air of the

sub-lingual cavity prevents sound propagation. To our knowledge,
the specific problem of tongue tracking in US images has only been
addressed by M. Stone et al. who developed the EdgeTrak soft-
ware [9]. Tracking in EdgeTrak is based on a snake model which
incorporates edge gradient and intensity information as well as in-
formation on contour orientation. Thorough experiments with this
software were conducted on our database and showed significant
drawbacks: tracking failures often occurred and needed manual cor-
rection which prevented us from using this method to processlong
sequences of US data. These failures are mainly due to the fact that
the dynamics of the tongue is not exploited in the tracking scheme.

To cope with these problems, we have extended one of our pre-
vious works on contour tracking in US images [3] to the particular
case of the tongue. As in [4, 7], the general idea of the tracking
process was to restrict the class of allowable motions (shape de-
formations) to an admissible set of parametric motions in order to
reduce the influence of noise.

The contour is manually initialized in the first frame of the se-
quence. Once initialized, the tracker operates in a loop following
two major stages: a prediction of the contour is computed under
the hypothesis of a parametric model. A refinement stage based on
snakes [8] is then performed to compute the actual position.Adap-
tation of this general scheme to cope with the specificities of the
tongue and to improve the robustness of the tracking includes the
following:
• An original preprocessing method that reveals the contour of the

tongue and is robust against speckle noise.
• Prediction of the position is performed under the hypothesis of

a parametric motion model (affine model) using the optic flow
to meet the required robustness.

• Appropriate boundary conditions for the snake in the refinement
stage are applied.

• Robustness of the tracking is enforced by introducing prioron
the tongue shape provided by the EM sensors glued on the
tongue.
These improvements are described in more details in the restof

the section. In the following, US images are presented so that the
apex is on the left and the palate on top.

3.1 Overview of the visual tracking

Robustness of the tracking procedure is achieved by restricting in a
first step the class of allowable tongue deformation/motionto an ad-
missible set. The prediction of the contour is then computedthanks
to the optic flow between two consecutive images. Since only the
normal component of the optic flow [6] is reliable, the motionfp is
computed as the one minimizing (see Fig.2)

∑
1≤i<N

|(
−−−−−−→
Mi fp(Mi).ni)ni −v⊥(Mi)|

2 (1)

Where{Mi}1≤i≤N are the points of the contourC to be tracked,p is
the set of parameters (6 for an affine motion),ni is the unit normal to
C at pointMi andv⊥ is the normal component of the optic flow. As
the optical flow does not match the true displacement, we refine the
estimation iteratively in the following way: we compute thenormal
optical flowv⊥1 on the curvef p̂0(Mi){1≤i≤N} between the registered

imageI1( f−1
p̂0

) andI2. Resolving (1) withv = v1 then allows us to
computef p̂1 . Hence,f p̂1 ◦ f p̂0 is a better estimate of the motion and
so on... Successive infinitesimal refinementsf p̂q ◦ ... ◦ f p̂0 give an
accurate estimation of the motion field. The prediction obtained is
generally close to the actual contour.

Then, the constraint on the deformation is dropped and the posi-
tion of the contour is refined by using the classical snake model [8].
For a parameterizations of a contourC, it consists in minimizing
the energy functional:

φ(C) =
∫ 1

0
Eimg(C)+Eint(C)ds (2)
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Figure 2: Predicting the tongue shape: given the contourC1 in the
current image (in black), the affine transformation that best matches
the normal optic flow (black arrows) is iteratively computedgiving
rise to the predicted curve (in red). This curve is generallyclose to
the searched contourC2 (in green) and is likely to converge using
snake process.

The internal energy termEint controls the snake shape and the im-
age energy termEimg defines the features in the image that are of
interest. The derivation of the latter term is the scope of the next
section.

3.2 Preprocessing of the ultrasound images

Ideally, the image energy termEimg(x,y) used in (2) should have
local minima at the points of the curve to be tracked, which inour
case is the lower border of the tongue. The most common choiceis
to derive this term from the simplegradient image|∇Gσ ∗u(x,y)|
computed on a gaussian smoothed version2 of the intensity image
u(x,y) [8]. As section 4.2.2 reveals, this choice may be not as ef-
fective as usual, because of the high amount of speckle noisein US
images.

Therefore, we have designed a sophisticated processing of US
images, which simplifies them, emphasizes the tongue contour and
extracts an effectiveEimg(x,y). This method exploits the fact that
the tongue’s visible part is the lower border of a band with relatively
high intensity. It processes each frameu(x,y) of the US sequence
separately and consists of the following steps:

1. u(x,y) is converted tou(r,φ), which is the image’s represen-
tation using the polar coordinate system with origin the intersection
point of the US beams. This representation seems more convenient
because ther-direction is exactly the direction of the US beam.

2. A robust estimation of the orientationθ (r,φ) that is perpen-
dicular to the edges ofu(r,φ) is computed at every point. This is
done by first computing thestructure tensorof u(r,φ) [14]:

J(r,φ) = Gρ ∗
(

∇(Gσ ∗u)⊗∇(Gσ ∗u)
)

, (3)

where “⊗” denotes tensor product. Then,θ (r,φ) ∈ [0,π) is derived
as the orientation of the eigenvector that corresponds to the largest
eigenvalue ofJ(r,φ). Due to the convolutions in (3),J is insensi-
tive to image details smaller thanO(σ) and is affected by the image
variation within a neighborhood of sizeO(ρ). Thus,σ must be rela-
tively small, comparable to the characteristic size of speckle pattern
andρ must be larger thanσ , comparable to the size of the tongue’s
bright band inu(r,φ).

3. u(r,φ) is correlated with a spatially varying kernel
k(r,φ ; r ′,φ ′) (see Fig. 3.b), which in each point is aligned to the
direction ofθ (r,φ):

f1(r,φ) =

∫ ∫

u(r ′,φ ′)k(r,φ ; r + r ′,φ +φ ′)dr ′dφ ′ . (4)

The responsef1(r,φ) has large values mainly at the lower borders of
bright bands. More precisely, the kernelk is constructed as follows:

First, we consider the piecewise constant 1D kernelk1(n) that is
plotted in Fig. 3. This kernel corresponds to the variation of an ideal
bright band, in its normal directionn (the pointn = 0 corresponds

2Gσ (x1, ..,xN) denotes anN-D isotropic gaussian kernel of standard de-
viation σ and “∗” denotes convolution.

to the lower border of this band). Therefore,d2 should approximate
the typical size of the tongue’s bright band inu(r,φ). Also, we
chosed1 = 0.44d2.

Afterwards, a regularized and 2D-extended version ofk1(n) is
constructed:

k2(n,ξ ) =
(

Gσn(n)∗k1(n)
)

Gσξ (ξ )

where we choseσn = d1/8 andσξ = d1 (see also Fig. 3.a). The
convolution withGσn smoothes the intra-region transitions. Also,
the extension toξ -direction makes the responsef1 more robust to
speckle patterns.σξ is relatively large, since near the tongue, the
image variations inξ -direction are caused only from the speckle.
Roughly, the gaussiansGσn andGσξ offer an adaptive anisotropic
smoothing, mainly aligned to the edges ofu(r,φ).

Finally, the kernelk(r,φ ; r ′,φ ′) (Fig. 3.b) is derived from rotat-
ing the functionk2(r ′,φ ′) by the angleθ (r,φ).

(a) (b)

Figure 3: Construction of the kernelk(r,φ ; r ′,φ ′), which is corre-
lated with the US image frames.

4. We get f2(r,φ) from f1(r,φ) by setting to 0 all the negative
values of f1. This is done because, at the points withf1 < 0, the
image variation is closer to the pattern of a dark band, rather than a
bright band. Thus,f2 avoids the negative local maxima off1, which
could undesirably attract the snake.

5. f2(r,φ) is converted tof2(x,y). Then, f3(x,y) is computed
as thegrayscale area openingof f2(x,y) at a relatively small size
scaleA [13]. This operation “eliminates” the bright regions with
area smaller thanA. Usually, these regions are caused by speckle
noise, since the tongue’s bands have much bigger area.

6. Finally, the energy term is computed fromEimg(x,y) =
− f3(x,y), since it must have local minima, instead of maxima, at
the points of the tongue contour.

As seen in Fig. 6, our method yields a result that reveals better
the tongue and is less affected by speckle than the gradient image.

3.3 Boundary conditions on the snake

As it is well known, snakes naturally tend to shrink. Classical
boundary conditions are fixed or free extremities which are not well
suited to our problem. We have tested two different boundarycon-
ditions, defined by rays on Fig.4.a.
• the two snake extremities belong to the rays (in blue) definedby

the extremities of the initialization curve.
• the left extremity belongs to the ray defined by the sensor posi-

tion of the apex and the right extremity belongs to the ray de-
fined by the right extremity of the initialisation curve.
Doing this, we avoid snake shrinking while letting the extremi-

ties free to be anywhere on the rays. Technically speaking, we use a
polar coordinate system(r,φ), as in section 3.2, to represent the im-
ages, so that the rays are parallel. Our new boundary conditions can
then be expressed asφ=constant and r is freewhich are boundary
conditions easy to integrate in the snake process.

3.4 Tracking with US images and EM sensors

When images are very noisy, algorithms which are purely based on
low-level properties will fail to detect the right contour.Incorpo-



Figure 4: Improving the snake model: (a): definition of appropriate boundary conditions: the extremities belong to the rays drawn in blue
(b) Reinitialization of the snake with the sensors (c) Comparison of sensorless (yellow) vs. sensor-added (blue) visual tracking (sensor =
green cross).

rating shape prior is then a good mean to constrain the tracking al-
gorithm to detect natural tongue shapes. In this work, the locations
given by the sensors glued on the tongue are used as prior. Dueto
slight registration or synchronization errors, the sensors do not al-
ways belong to the surface of the tongue. We therefore preferto use
these positions as soft constraints instead of constraining the snake
to pass through these points. A first solution is to create attractive
force fields towards these positions. A simpler but more efficient
solution is to modify the predicted curve by integrating thesensors
in the predicted curve as shown in Fig.4.b. This way, the snake is
locally attracted to the gradient created by the tongue and this often
dramatically improves the convergence of the snake. The interest of
such a strategy is demonstrated in Fig. 4.c.

4. RESULTS

4.1 Acquisition system

A corpus of US sequences with EM and audio data was successfully
acquired with our acquisition system. This representativesample of
speech data, during 10 min and 15 seconds, includes Vowel-Vowel
(/ae/, /ai/, /yo/...), Vowel-Consonant-Vowel (/aka/, /isu/...) and com-
plete sentences (“La poire est un fruit à pépins”...) in French.

4.2 Tracking method

4.2.1 Data

A sequence of 390 images (approximately 6 seconds) acquiredby
our system has been taken to evaluate our tracking method. This
sequence includes four groups of phonemes (/ae/ /ai/ /ao/ /au/). On
the first two groups of phonemes (/ae/ /ai/, 200 images), the tongue
contour appears strong and the tongue motion is limited. On the last
two groups (/ao/ /au, 190 images), large parts of the tongue contour
are weak because the tongue is moving fast and is not correctly
imaged by the US system.

In our experimentations, the affine motion model proved to be
a good choice for the estimation of the displacement. In prac-
tice, the infinitesimal displacements rapidly converged towards
identity. 50 iterations were used to estimate the global mo-
tion. Fig. 5 shows images with the tongue successfully tracked
using our proposed algorithm. Whole video sequences which
these images are extracted from are available on our website:
http://magrit.loria.fr/Confs/Eusipco08/ .

4.2.2 Evaluation

Five tracking methods were evaluated :
• method 1: EdgeTrak
• method 2: snake on gradient images and extremities defined by

the initialization
• method 3: snake on gradient images and use of the sensors
• method 4: snake on preprocessed images and extremities de-

fined by the initialization

Figure 5: Tracking on 6 images of the sequence /ae/ /ai/ /ao/ /au/.
Associated phonemes (left to right, top to bottom): /a/ in /ae/, /e/,
/a/ in /ao/, /o/, /u/ (start), /u/ (end)

• method 5 : snake on preprocessed images and use of the sensors
(our proposed method)
A manually drawn contour was considered as the ground truth

position of the tongue shape to evaluate these tracking methods.
The error on a curve was computed as the mean distance between
each point on the curve and the closest point on the ground truth
contour. The evaluation is based on the mean error (in mm) on
whole sequences with the associated standard deviation. Wealso
used the percentage of images of the sequences for which the error
was above 2 mm. In our experimentations, this value appearedto
be critical to consider the tracking failed. Results on the first two
groups of phonemes are presented in table 2.

Method # 1 2 3 4 5
Mean error (mm) 1.36 1.18 1.34 1.45 1.31
Std. dev. (mm) 0.58 0.51 0.65 1.37 1.21

% images error> 2 mm 17 9.5 14.5 14.5 14

Table 2: Results of the tracking on the group of phonemes /ae/and
/ai/ (200 images - 3 sec).

All methods yield similar mean errors for this sequence (be-
tween 1 mm and 1.5 mm): this sequence presents no major difficul-
ties because the tongue contours are strong in the images. Fig. 6
shows the results of methods 3 and 5 for a frame of the sequence.
We see that the tracking using our filtering to deriveEimg instead of
simple gradient yields an improvement to the shape of the tongue.
But in both cases, the right part of the curve is not accurate because
of the very low contrast of the tongue edge.

Our method has also been tested on the group of phonemes /ao/
/au/, where the tongue is moving faster.

Results presented in table 3 demonstrate the benefits of our
method. The motion estimation brings robustness to the tracking



Figure 6: Image termEimg using the simple gradient image (left)
and our preprocessing method (right). The corresponding tracking
results of methods 3 (left) and 5 (right) are superimposed.

Method # 1 2 3 4 5
Mean error (mm) 5.68 1.83 1.79 1.72 0.97

Std. dev.(mm) 2.57 0.51 0.56 1.11 0.34
% images error> 2 mm 93.2 35.3 34.2 18.9 1.6

Table 3: Results of the tracking on the group of phonemes /ao/and
/au/ (190 images - 2.9 sec).

with mean error below 2 mm. On the contrary, EdgeTrak fails inthis
difficult case because of the fast motion and the lack of constraints
at the extremities. Sensors significantly improve the tracking, be-
cause the snake extremity is stopping at the sensor on the apex. In
the case of fast backward tongue motion, the snake tends to get at-
tracted by others structures such as the floor of the mouth cavity
instead of sliding along itself (see Fig. 7). The use of preprocessed
images reduces the number of failures of the tracking because it
emphasizes the tongue contour and suppresses the speckle patterns.
On the other hand, some parts on the right side of the image (back
of the tongue) are smoothed out by the preprocessing.

(a) (b)

(c) (d)

Figure 7: Effect of the sensors : (a) initialization image. (b) the
tongue is moving back. (c) snake without sensors constraint(d)
snake with the sensor constraint. ((c) and (d) are zooms on the apex.

5. CONCLUSION

We have presented a framework to automatically recover the tongue
shape during speech processing. The first part described an acqui-

sition system with US imaging and EM sensors, which acquires
spatially calibrated and synchronized data on the tongue position
during speech. The second part focused on the preprocessingof the
noisy US data and presented an efficient tool to track the tongue
shape by combining the estimation of the displacement, snake with
constraints on the extremities, and use of EM sensors as priors to
help the tracking. This method has been successfully testedon
speech sequences even when fast motions occur. Residual failures
were due to difficulties in imaging the back of the tongue. Future
improvements will use shape priors to restrict the snake shapes to
realistic ones.
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