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ABSTRACT images which bring important information on the tongue dyitas.

In this papet, a framework to acquire and process dynamic dateD€SPite pioneering efforts conducted by M. Stone [12, 10gré

of the tongue during speech processing is presented. Bisstup ~d0€S not exist any efficient tool to track the tongue shape 0
to acquire data of the tongue shape combining ultrasoungésya  S€duences with sufficient reliability. We thus describeent®n 3

electromagnetic localization sensors and sound is predeifech-  Efficient pre-processing methods of US images to reduce rzoie
niques to automatically calibrate and synchronize the degade- [0 €nhance the tongue contours. A complete framework to-auto
scribed. A method to extract the tongue shape is then propage ~ Matically extract the tongue shape over sequences whiels tat-
combining a preprocessing of the ultrasound images witmage- ~ Vantage of the EM sensors is then described. Significanttsese
based tracking method that integrates adapted constraints given in section 4.

1. INTRODUCTION 2. THEACQUISITION SYSTEM

Being able to build a model of a speaker’s vocal tract and face 21 General setup

a major breakthrough in speech research and technology.cAlvo US imaging provides a continuous tongue shape in the miitabg

tract representation of a speech signal would be both bégidfimm plane. However, the air in the sublingual cavity and/or #ve pone

a theoretical point of view and practically useful in maneeph  block the US signal, making the apex invisible in most of tik-

processing applications (language learning, automateappro- ages. One EM sensor glued on the apex of the tongue thus psovid

cessing, speech coding, speech therapy, film industryThis re-  point-wise tracking of the extremity of the tongue. A secd#id

quires not only to design an acquisition system but also fmele sensor glued on the tongue dorsum helps to constrain théidaca

appropriate image processing techniques to extract tiguktors  of the tongue contour in US images.

(tongue, palate, lips...) from the data. Our setup relies on a Logig5 Expert US machine (GE Health-
An ideal imaging system should cover the whole vocal tractcare) and the Aurora EM system (NDI). The speaker’s voice is

(from larynx to lips) and the face, have a sufficient spatial ime  recorded by a microphone connected to a PC. The main charac-

resolution, and not involve any health hazard. At preseotsin- teristics of each modality are summarized in table 2.1. e dbop

gle imaging technique answers the above requirements:atbee mode, the acquired US images are stored in a video buffers Thi

dynamics of the tongue can be acquired through ultrasour®) (U buffer is saved to disk in DICOM format when the user presses a

imaging [12, 10] with a high frame rate but these 2D images ardgootswitch at the end of the sequence. The US machine was tune

very noisy; 3D images of all articulators can be obtainedwiig-  to acquire 532 434 pixels images (approx 9 cm7 cm) at 66 Hz,

netic resonance imaging (MRI) but only for sustained soUblis  which correspond to a 15 seconds video buffer.

electromagnetic (EM) sensors enable the investigatiopeésh ar-

ticulators dynamics for a small number of points of the tamfjLi]. EM Us Sound
Therefore, combining several imaging techniques is necgsSev- Acquisition rate 20 Hz 66 Hz 24100 Hz
eral attempts have been made to acquire multimodal artanyla Recording time | unlimited | 15 seconds| unlimited
data. The HOCUS system [15] combines US imaging togethér wit|  rjle data format text DICOM WAV
infrared emitting diodes placed on the lips and on the prédbé¢he Recording process real time | cine loop | real time

HATS system [12], M. Stone used several 2D US acquisitions t6
recover a 3D model of the tongue. Using multimodality regsir Table 1: Main characteristics of the modalities used in @ausi-
to perform spatial calibration and temporal synchroniatin or-  tion system.
der to express the data in the same spatio-temporal framaugrh
very important, _these aspects are generally either noteaddd in 5 5 Synchronization
the above mentioned systems or at best manually performed. ) .

The system we foresee will integrate 3D MRI, high-speedUS images, EM sensor data and sound must be synchronized to
stereo-vision, US imaging and EM sensors to produce 3Det, i. €nable data fusion. Fig. 1 depicts the complete acquistystem
dynamic, models of the vocal tract. We focus here on the dymam together with synchronization add-ons. The system coreol

part, that US imaging and EM sensor form, to get the tongupesha PC which provides a precise time-line to stamp the variogiseads:
including the apex. it sends a stop signal to the US machine to save the videorbuffe

Our contributions in this paper are twofold. First, sectn to disk, thanks to an electronic relay that simulates a foioth
gives an overview of our US+EM acquisition system. In additi ~Pressure; it sends timestamped start and stop signals #utfoea
fully automatic procedures for spatial calibration andagyoniza-  EM system; and it emits beeps at the start and end of the aidopiis
tion are described. Our second contribution is on the peings !0 timestamp the sound data.

of the articulatory data. We here focused on the processingSo Sending start and stop signals allows us to measure the ac-
tual acquisition frequency and drastically reduce the tmalgshift.

1The authors acknowledge the financial support of the Futme a For example, 2% error is common on sound acquisition ragg (e.
Emerging Technologies (FET) programme within the Sixtmfeavork Pro- ~ 43.2kHz instead of 44.1 kHz). Such an error implies a 300 rifs sh
gramme for Research of the European Commission, under REER@on-  at the end of a 15 seconds acquisition, that is a shift by 20nJS i
tract no. 021324". ages in our setup.
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Figure 1: US+EM system setup.

sub-lingual cavity prevents sound propagation. To our Kedge,

the specific problem of tongue tracking in US images has oagnb
addressed by M. Stone et al. who developed the EdgeTrak soft-
ware [9]. Tracking in EdgeTrak is based on a snake model which
incorporates edge gradient and intensity information ab agein-
formation on contour orientation. Thorough experimentthvtiis
software were conducted on our database and showed significa
drawbacks: tracking failures often occurred and neededialaor-
rection which prevented us from using this method to protass
sequences of US data. These failures are mainly due to théhé&ic
the dynamics of the tongue is not exploited in the trackirtgeste.

To cope with these problems, we have extended one of our pre-
vious works on contour tracking in US images [3] to the paiic
case of the tongue. As in [4, 7], the general idea of the tragki
process was to restrict the class of allowable motions (sl
formations) to an admissible set of parametric motions deoto
reduce the influence of noise.

The contour is manually initialized in the first frame of the s
guence. Once initialized, the tracker operates in a loojpvidhg
two major stages: a prediction of the contour is computedetnd

Experiments were conducted to assess the synchronization athe hypothesis of a parametric model. A refinement stagedoase
curacy of our setup. The maximum time lapse is below 1 ms fosnakes [8] is then performed to compute the actual posifiiap-
sound and 25 ms for EM data. Since we had no access grantdation of this general scheme to cope with the specificitiethe
to the internals of the US machine, we could only measureehe r tongue and to improve the robustness of the tracking inslutle
peatability of the time delay between the stop signal andase  following:

US frame actually captured. The average delay was measui®it e An original preprocessing method that reveals the contbtirep
52 ms, with a standard deviation of 14 ms (approx. 2 US images) tongue and is robust against speckle noise.
Further details can be found in [1]. e Prediction of the position is performed under the hypothesi
] ] ] a parametric motion model (affine model) using the optic flow
2.3 US/EM spatial calibration to meet the required robustness.

The system comprises 2 spatial modalities: EM data and US im-® Appropriate boundary conditions for the snake in the refieem
ages. US images are dependent on the probe position, aefiatteer stage are applied.

may move along the acquisition. On the other hand, EM semsers e Robustness of the tracking is enforced by introducing poior
located relative to an EM field generator whose position isdix the tongue shape provided by the EM sensors glued on the
Spatial data fusion thus requires that the US images areessgd tongue.

in the fixed EM reference frame. Therefore, the US probe jaosit These improvements are described in more details in thefest
is tracked thanks to a 6DOF EM sensor connected to the Aurorghe section. In the following, US images are presented sotittea
system. The unknown, but fixed, linear relation between te U apex is on the left and the palate on top.

image inner reference frame and the 6DOF sensor local refere
frame is calibrated by imaging a calibration fantom undeatous
probe positions: a wooden stick whose line equation is known
the EM frame, and whose intersection with the US image plane i

3.1 Overview of thevisual tracking
Robustness of the tracking procedure is achieved by réagimn a

visible in the US images. Further details can be found in [2].

After calibration, tracking the 6DOF EM sensor becomes

equivalent to tracking the US image plane. This latter pleae

then be positioned with respect to the EM reference frameah r

time during the acquisition. It is thereby possible to chatkeal

time that the EM sensors glued on the tongue lie within thedS i
age plane, which is necessary to fuse the acquired data. #ingar

for US/EM misalignment was integrated in our system.

first step the class of allowable tongue deformation/matioen ad-
missible set. The prediction of the contour is then comptitedks
to the optic flow between two consecutive images. Since dmdy t
normal component of the optic flow [6] is reliable, the motitnis
computed as the one minimizing (see Fig.2)

(M Fp(M).ni)my — v (M) 2 1)

1<i<N

Finally, the tongue motion, as seen in US images, may be cor-

rupted by global head motion. Indeed, in our experiencestammg
head immobilization hampers natural speech utterance loner
acquisition sessions. Therefore, our system does notdeciny
head immobilization devices. Instead, the speaker is askee-
main still. The head position is corrected for occasionatiam

thanks to 2 5DOF EM sensors glued behind the speaker’s ears.

3. TRACKING THE TONGUE SHAPE IN THE US
SEQUENCES

Our goal is to develop automatic tools (or as automatic asiples

Where{M;}, ;- are the points of the conto@to be trackedp is
the set of parameters (6 for an affine motiag)is the unit normal to

C at pointM; andv' is the normal component of the optic flow. As
the optical flow does not match the true displacement, weeéfia
estimation iteratively in the following way: we compute thermal

optical flowv;- on the curvefp, (Mi)(1<j<ny between the registered

imagell(fr;ol) andl,. Resolving (1) withv = v then allows us to
computefys, . Hence,fp, o fp, is a better estimate of the motion and
so on... Successive infinitesimal refinemefyso ... o fg; give an
accurate estimation of the motion field. The prediction et is

in order to extract the tongue shape in the vast amount of US sgjenerally close to the actual contour.

guences recorded in our corpus. Many works have been detwted

tracking in the computer vision community. However tragkin

Then, the constraint on the deformation is dropped and tee po
tion of the contour is refined by using the classical snakeehi@].

US sequences is well known to be difficult due to the high siegeck For a parameterizatios of a contourC, it consists in minimizing

noise. There are many other difficulties specific to our aygpion:

(i) the high speed of the tongue for some sounds producegeblur

contours which are difficult to track, (ii) the tongue undseg high
elastic deformations (ii) the apex is often not visible asdir of the

the energy functional:

1
9(C) = /O Eimg(C) + Eint (C)ds @
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Figure 2: Predicting the tongue shape: given the corffauin the
current image (in black), the affine transformation that bestches
the normal optic flow (black arrows) is iteratively computgiding
rise to the predicted curve (in red). This curve is generelibse to
the searched conto@; (in green) and is likely to converge using
shake process.

The internal energy terrij; controls the snake shape and the im-

age energy ternkimg defines the features in the image that are of

interest. The derivation of the latter term is the scope efribxt
section.

3.2 Preprocessing of the ultrasound images

Ideally, the image energy termg(x,y) used in (2) should have
local minima at the points of the curve to be tracked, whicbun
case is the lower border of the tongue. The most common climice
to derive this term from the simplgradient image(0Gy * u(x,y)|
computed on a gaussian smoothed vergiof the intensity image
u(x,y)
fective as usual, because of the high amount of speckle iold8
images.

Therefore, we have designed a sophisticated processingof U

images, which simplifies them, emphasizes the tongue coatu
extracts an effectivi&img(x,y). This method exploits the fact that
the tongue’s visible part is the lower border of a band withtreely
high intensity. It processes each frame,y) of the US sequence
separately and consists of the following steps:

1. u(x,y) is converted tai(r, @), which is the image’s represen-
tation using the polar coordinate system with origin theiiséction
point of the US beams. This representation seems more ciemien
because the-direction is exactly the direction of the US beam.

2. A robust estimation of the orientatic(r, @) that is perpen-
dicular to the edges ai(r, @) is computed at every point. This is
done by first computing thstructure tensoof u(r, @) [14]:

J(r,9) = Gp * (0(Gg *U) ® O(Gg *U)) , (©)]
where ®” denotes tensor product. Thefi(r, ) € [0, 1) is derived
as the orientation of the eigenvector that correspondsetdatiyest
eigenvalue ofJ(r, ¢). Due to the convolutions in (3) is insensi-
tive to image details smaller th& o) and is affected by the image
variation within a neighborhood of sif&p). Thus,o must be rela-
tively small, comparable to the characteristic size of kfgepattern
andp must be larger thaa, comparable to the size of the tongue’s
bright band inu(r, @).

3. u(r,e) is correlated with a spatially varying kernel
k(r,@;r',¢') (see Fig. 3.b), which in each point is aligned to the
direction of@(r, ¢):

e = [ [ur @k +r o+ g)d'dg. @)

The responsé; (r, @) has large values mainly at the lower borders of
bright bands. More precisely, the kerrkgk constructed as follows:
First, we consider the piecewise constant 1D kekpgt) that is
plotted in Fig. 3. This kernel corresponds to the variatibaroideal
bright band, in its normal direction (the pointn = 0 corresponds

ZGU(xl, ..,Xn ) denotes aiN-D isotropic gaussian kernel of standard de-
viation g and “” denotes convolution.

to the lower border of this band). Therefode,should approximate
the typical size of the tongue’s bright band ufr, ). Also, we
chosed; = 0.44d,.

Afterwards, a regularized and 2D-extended versio;dh) is
constructed:

ka(n, &) = (Ga, (n) xk1(n)) Go (£)

where we chos@y, = d;/8 ando; = d; (see also Fig. 3.a). The
convolution withGg, smoothes the intra-region transitions. Also,
the extension td -direction makes the respon$e more robust to
speckle patternsog is relatively large, since near the tongue, the
image variations ir€ -direction are caused only from the speckle.
Roughly, the gaussiarS,, andGg, offer an adaptive anisotropic
smoothing, mainly aligned to the edgesudf, ).

Finally, the kernek(r, @;r’, ¢') (Fig. 3.b) is derived from rotat-
ing the functionky(r’, ¢') by the angled(r, ).

—ky(n)

2
@) -=Gg,(n)xki(n

ai

dy dy+d)

(@)

(b)
[8]. As section 4.2.2 reveals, this choice may be not as efFigure 3: Construction of the kern&(r, ¢;r’, ¢’), which is corre-
lated with the US image frames.

4. We getfy(r, @) from f1(r, @) by setting to 0 all the negative
values off;. This is done because, at the points with< 0, the
image variation is closer to the pattern of a dark band, ratten a
bright band. Thusf, avoids the negative local maxima fif, which
could undesirably attract the snake.

5. fa(r,@) is converted tofy(X,y). Then, f3(x,y) is computed
as thegrayscale area openingf fa(x,y) at a relatively small size
scaleA [13]. This operation “eliminates” the bright regions with
area smaller tha’. Usually, these regions are caused by speckle
noise, since the tongue’s bands have much bigger area.

6. Finally, the energy term is computed froBmg(X,y) =
—f3(x,y), since it must have local minima, instead of maxima, at
the points of the tongue contour.

As seen in Fig. 6, our method yields a result that revealebett
the tongue and is less affected by speckle than the gradiegsd.

3.3 Boundary conditionson the snake

As it is well known, snakes naturally tend to shrink. Claakic
boundary conditions are fixed or free extremities which arewell
suited to our problem. We have tested two different boundary
ditions, defined by rays on Fig.4.a.

e the two snake extremities belong to the rays (in blue) defiyed
the extremities of the initialization curve.

o the left extremity belongs to the ray defined by the sensoF pos
tion of the apex and the right extremity belongs to the ray de-
fined by the right extremity of the initialisation curve.

Doing this, we avoid snake shrinking while letting the ertre
ties free to be anywhere on the rays. Technically speakiegjse a
polar coordinate systefm, @), as in section 3.2, to represent the im-
ages, so that the rays are parallel. Our new boundary conditian
then be expressed gsconstant and r is freavhich are boundary
conditions easy to integrate in the snake process.

3.4 Tracking with USimages and EM sensors

When images are very noisy, algorithms which are purely dase
low-level properties will fail to detect the right contoulmcorpo-



Figure 4: Improving the snake model: (a): definition of agprate boundary conditions: the extremities belong to tysdrawn in blue
(b) Reinitialization of the snake with the sensors (c) Congoa of sensorless (yellow) vs. sensor-added (blue) Visaeking (sensor =
green cross).

rating shape prior is then a good mean to constrain the mgcki-
gorithm to detect natural tongue shapes. In this work, thations
given by the sensors glued on the tongue are used as priortadDue
slight registration or synchronization errors, the sesasw not al-
ways belong to the surface of the tongue. We therefore prefese
these positions as soft constraints instead of constigihia snake
to pass through these points. A first solution is to crearactive
force fields towards these positions. A simpler but more ieffic
solution is to modify the predicted curve by integrating femsors
in the predicted curve as shown in Fig.4.b. This way, the srnak
locally attracted to the gradient created by the tongue hisdften
dramatically improves the convergence of the snake. Tleegst of
such a strategy is demonstrated in Fig. 4.c.

4 RESULTS Figure 5: Tracking on 6 images of the sequence /ae/ /ail éa/ /
: Associated phonemes (left to right, top to bottom): /a/ Y /ae/,
4.1 Acquisition system lal in faol, lo/, lul (start), /u/ (end)

A corpus of US sequences with EM and a}udio data was succhyssful
acquired with our acquisition system. This representatarple of e method 5 : snake on preprocessed images and use of the sensors
speech_data, during 10 min and 15 seconds, includes VowetNo (our proposed method)
(/Iae/, /ail, yol...), Vowel-Consonant-Vowel (/.E"k‘j}/“["s')n%ﬂd com- A manually drawn contour was considered as the ground truth
plete sentences (“La poire est un fruit & pépins”...) ierfeh. position of the tongue shape to evaluate these tracking adsth
42 Tracki hod The error on a curve was computed as the mean distance between

. racking metho each point on the curve and the closest point on the grouri tru
4.2.1 Data contour. The evaluation is based on the mean error (in mm) on

: . . hole sequences with the associated standard deviationalstie

A sequence of 390 images (approximately 6 seconds) acqbired . g
our sqystem has been tegken(topzvaluate o{lr tracking r)nethq(?rir Thused the percentage of images of the sequences for whiclrtive e
sequence includes four groups of phonemes (/ae/ /ail /af)/ @n was above 2 mm. In our experimentations, this value appdared
the first two groups of phonemes (/ae/ /ail, 200 images),dhegute be critical to consider the tracking fg:uled. Results on thst fiwo
contour appears strong and the tongue motion is limited h@retst groups of phonemes are presented in table 2.
two groups (/ao/ /au, 190 images), large parts of the tonga&ar

are weak because the tongue is moving fast and is not carrectl Method # 1 2 3 4 >

imaged by the US system. Mean error (mm) 136 1.18]| 1.34]| 1.45] 1.31
In our experimentations, the affine motion model proved to be| ___Std. dev. (mm) 058 051]065]137] 121

a good choice for the estimation of the displacement. In-prac| % Imageserror-2mm | 17 | 95 | 145] 145] 14

tice, the infinitesimal displacements rapidly convergedatias
identity. 50 iterations were used to estimate the global mo
tion. Fig. 5 shows images with the tongue successfully wreck
using our proposed algorithm. Whole video sequences which

these images are extracted from are available on our website All methods yield similar mean errors for this sequence (be-

Table 2: Results of the tracking on the group of phonemesafae/
Tail/ (200 images - 3 sec).

http://magrit.loria.fr/Confs/Eusipco08/ . tween 1 mm and 1.5 mm): this sequence presents no major difficu
ties because the tongue contours are strong in the imaggs.6Fi
4.2.2 Evaluation shows the results of methods 3 and 5 for a frame of the sequence

We see that the tracking using our filtering to deffigg instead of

Five tracking methods were evaluated : simple gradient yields an improvement to the shape of thguen

e method 1: EdgeTrak . _ Butin both cases, the right part of the curve is not accuratabse
° met_h(_)c_i 2 sr_lake on gradient images and extremities defined by the very low contrast of the tongue edge.
the initialization Our method has also been tested on the group of phonemes /ao/

o method 3: snake on gradient images and use of the sensors /au/, where the tongue is moving faster.
e method 4: snake on preprocessed images and extremities de- Results presented in table 3 demonstrate the benefits of our
fined by the initialization method. The motion estimation brings robustness to théitrgc



Figure 6: Image ternfmg using the simple gradient image (left)
and our preprocessing method (right). The correspondiacking
results of methods 3 (left) and 5 (right) are superimposed.

Method # 1 2 3 4 5
Mean error (mm) 568 183 1.79| 1.72| 0.97
Std. dev.(mm) 257 051 056 1.11| 0.34
% images error-2mm | 93.2 | 35.3| 34.2| 189 1.6

Table 3: Results of the tracking on the group of phonemesatad/
/au/ (190 images - 2.9 sec).

with mean error below 2 mm. On the contrary, EdgeTrak faithis
difficult case because of the fast motion and the lack of caims

at the extremities. Sensors significantly improve the tiragkbe-
cause the snake extremity is stopping at the sensor on tlxe Bpe
the case of fast backward tongue motion, the snake tendg ai-ge
tracted by others structures such as the floor of the mouthycav
instead of sliding along itself (see Fig. 7). The use of prepssed
images reduces the number of failures of the tracking bec#us
emphasizes the tongue contour and suppresses the spettklagpa
On the other hand, some parts on the right side of the imaggk (ba
of the tongue) are smoothed out by the preprocessing.

Figure 7: Effect of the sensors : (a) initialization imagd) the
tongue is moving back. (c) snake without sensors const(fdint
snake with the sensor constraint. ((c) and (d) are zoomseoagibx.

5. CONCLUSION

We have presented a framework to automatically recoveicihgite
shape during speech processing. The first part describedopni a

sition system with US imaging and EM sensors, which acquires
spatially calibrated and synchronized data on the tongwsitipo
during speech. The second part focused on the preprocesfsing
noisy US data and presented an efficient tool to track theusng
shape by combining the estimation of the displacement,eswitk
constraints on the extremities, and use of EM sensors assgoo
help the tracking. This method has been successfully tested
speech sequences even when fast motions occur. Residuadg$ai
were due to difficulties in imaging the back of the tongue. ureit
improvements will use shape priors to restrict the snakpehao
realistic ones.
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