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Abstract

Fundamental matrix estimation is difficult since it is often based on corre-
spondences that are spoilt by noise and outliers. Outliers must be thrown
out via robust statistics, and noise gives uncertainty. In this article we pro-
vide a closed-form formula for the uncertainty of the so-called 8 point al-
gorithm, which is a basic tool for fundamental matrix estimation via robust
methods. As an application, we modify a well established robust algorithm
accordingly, leading to a new criterion to recover point correspondences un-
der epipolar constraint, balanced by the uncertainty of the estimation.

1 Introduction and motivation
The fundamental matrix is the basic object that represents the geometric information be-
tween two views in the pinhole camera model [6, 8]. Considering two image points (one
in each view) that correspond to the same 3D point, the fundamental matrix is the 3× 3
matrix F that makes the homogeneous coordinates x and x′ of these points satisfy the
relation x′Fx = 0. Estimating F is crucial for structure and motion problems where infor-
mation (location of the camera and 3D scene) has to be retrieved from several images.

The fundamental matrix is most of the time evaluated from point correspondences.
Since F is defined up to a scale factor, it can be retrieved from eight correspondences.
In fact, because F has rank 2, seven points are sufficient. Estimating F is a difficult
task since point location is noisy and the correspondences are spoilt by outliers. Noise
calls for estimating F over the largest possible set of correspondences but outliers make
it awkward. A popular solution is to use tools from robust statistics such as RANSAC [7],
LMedS or M-estimators [18]. RANSAC, and methods inspired from it, consists in iterating
two steps: 1) estimating a model (here F) from the smallest possible set of data (here 7 or
8 randomly chosen correspondences), then 2) build a so-called consensus set among the
data that fit the model. The shortcoming of RANSAC is the specification of the consensus
set, and a large literature has been dedicated to this problem, see for example [3, 11, 17].
Once a consensus set has been built, it is possible to estimate the fundamental matrix from
it. See [18] for a large survey on fundamental matrix estimation.

RANSAC-like methods make it possible to detect outliers, but the inaccuracy in the
image point location is rarely modeled. Seminal contributions w.r.t. this are MLESAC [17]
and MAPSAC [16] where point location is endowed with a Gaussian model. Such methods
require to first estimate not only the variance of the point image location, but also outlier
distribution and prior probabilities. Besides, they focus on model fitting and do not take



into account the uncertainty of the fundamental matrix estimation from the minimal set
although it is also spoilt by inaccuracy.

The uncertainty of the fundamental matrix F is characterized by its two first moments,
that is, its mean and its covariance which measures the spreading of F . It has already
been computed for algorithms based on a (large) sample, free from outliers (e.g. on a
consensus set or a set of manually selected points). Csurka et al. [4] as well as Hartley
and Zisserman [8] explain how to derive it when F is estimated as the minimizer of the
non-linear criterion:

C(F) = ∑
(x,x′)

d(Fx,x′)+d(x,FT x′) (1)

where n correspondences (x,x′) are given1. The geometrical meaning of the quantity
d(Fx,x′) is the distance of x to the epipolar line Fx′, which is 0 if (x,x′) is an actual
correspondence. Let us also name [15], where the authors compute F as a maximum
likelihood estimation and give a bound on its covariance, and [19] with a dedicated pa-
rameterization. However, in these papers the estimation is also based on an outlier-free
sample. The present article is also related to [13] where covariance estimation is used in
the guided matching context.

There are usually two ways of estimating F covariance: Monte-Carlo simulations,
and derivation of a closed-form formula. Monte-Carlo suffers from its low convergence
rate (which is all the lower since one estimates a vector of R9, due to the so-called curse
of dimensionality) while closed-form formula are only first order approximations. Let us
also cite covariance estimation via the unscented transformation [9].

The main contribution of this article is to give the explicit computation of the uncer-
tainty of the 8 point algorithm (Sec. 2). This is important since the 8 point algorithm is
the basis of many RANSAC-like methods. We then derive the uncertainty of the epipolar
lines from the uncertainty on F . This is a classical derivation, however we plug the result
in a state-of-the-art robust algorithm and build a consistent probabilistic model (Sec. 3).
A proof-of-concept experiment is in Sec. 4.

2 Uncertainty of the 8 point algorithm
The 8 point algorithm gives the fundamental matrix F which is consistent with 8 corre-
spondences between two views. We propose here to characterize the uncertainty of the
fundamental matrix estimation from the uncertainty of the image points. Let us notice that
the uncertainty of F is inherent in the estimation algorithm, and that another algorithm
would lead to another uncertainty computation.

2.1 Reminder: 8 point algorithm
For this section we refer to [18] and references therein. We have here two images rep-
resenting the same scene from two different viewpoints, and n point correspondences
between these two views. Let us give some notations:

• F = (Fi j)16i, j63 is the fundamental matrix between two views.
• f is the column (F11,F12,F13,F21,F22,F23,F31,F32,F33)T .

1by abuse of notation we identify the image points and their homogeneous coordinates.



• x = (x,y,1) denotes an image point as well as its homogeneous coordinates (here
(x,y) is the pixel coordinate).
• (x j,x′j) is the j-th correspondence between the two views (1 6 j 6 n),
• M is the n×9 matrix:

M =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2 1

...
...

...
...

...
...

...
...

...
x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1


The epipolar geometry constraint (that is, ∀ j ∈ [1,n], x′jFx j = 0) simply leads to the

matrix equation M f = 0. The case n = 8 corresponds to the 8-points algorithm. The
trivial solution f = 0 is of course not acceptable, f is thus a singular vector associated
to the singular value 0. Moreover, F has rank 2 (because the epipoles lie in its left and
right kernels), which has to be imposed afterward because of numerical stability of f
computation. A common way of handling the whole problem is to

1. Compute a singular value decomposition (SVD) of M and consider a singular vector
associated to the smallest singular value (ideally 0); this is equivalent to searching
an eigenvector associated to the smallest eigenvalue of MT M and also equivalent to
the least square formulation, that is minF ∑

n
j=1(x

′T
j Fx j)2 (subject to ||F || constant).

2. Then put the smallest singular value of F to zero, which is equivalent to substitut-
ing F with the closest rank 2 matrix w.r.t. the Frobenius norm.

Step 1 makes it necessary to choose F in a (generally) 1-dimensional singular or eigen
space. Popular choices are either imposing ||F || = 1 or setting one of the coefficient
of F to 1. This latter choice is theoretically quite touchy since it endangers the numerical
stability of F estimation if this coefficient should vanish. Although it is still a questionable
point, we choose to set F33 = 1 for the sake of computation simplicity. Matrix F is thus
given as a solution of the linear system M̃ f̃ = c, where:

1. f̃ = (F11,F12,F13,F21,F22,F23,F31,F32)T ,
2.

M̃ =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1
x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn


3. and c =−(11111111)T .

In the case of interest, n = 8 and M̃ is generically non-singular. We get F by solving

f̃ = M̃−1c, (2)

and then imposing the rank 2 constraint.

2.2 Fundamental matrix uncertainty
The question of interest is, supposing the pixel coordinates of the image points are spoilt
by Gaussian noise, how to estimate the uncertainty of the fundamental matrix F?

In the sequel, we make use of the following classical theorem.



Theorem 1 (propagation property) Let v be a random vector in Rm with mean v and
covariance matrix Σ, and g : Rm→ Rn be an affine map such as g(v) = g(v)+ A(v− v).
Then g(v) is a random vector in Rn with mean g(v) and covariance matrix AΣAT .

When g is not linear, a first order approximate gives an approximation of the covari-
ance matrix by replacing A by the Jacobian matrix J(v).

This property leads us to estimate the Jacobian of the whole transformation from X =
(x1,y1,x′1,y

′
1,x2,y2,x′2,y

′
2, . . .x8,y8,x′8,y

′
8) to F . We first study the Jacobian of X 7→ M̃−1c,

then we will take care of the rank 2 constraint.

Jacobian of f̃ computation. Let Θ : A 7→ A.c, Ψ : A 7→ A−1, and Φ : X 7→ M̃. One has
f̃ = Θ◦Ψ◦Φ(X), and the Jacobian matrix of the transform is, according to the chain rule:

JΘ◦Ψ◦Φ(X) = JΘ(Ψ◦Φ(X)) · JΨ(Φ(X)) · JΦ(X). (3)

We now derive the Jacobian matrices.

• JΦ(X) is a 64x32 matrix: first row consists in the 32 derivatives of the (1,1) coeffi-
cient of M (that is x′1x1) w.r.t. the 64 components of X , second row consists in the
32 derivatives of the (2,1) coefficient of M (that is x′2x2) and so on.

• JΨ(A) is a 64x64 matrix. Since d(A−1) = −A−1dAA−1 (differentiate AA−1 = I8),

one has ∂ (A−1)
∂Ei, j

=−A−1Ei, jA−1 where Ei, j is the canonical base matrix with entries

equal to 0 except in position (i, j) which is 1. Now, ∂ (A−1)
∂Ei, j

gives the 64 coefficients
of the column i+8∗ ( j−1) of JΨ(A).
• JΘ is a 8x64 constant matrix (since Θ is a linear transform) and Ei, j.c gives the 8

coefficients of the column i+8∗ ( j−1) of JΘ.

In the end, the Jacobian of the transformation which gives f̃ from X is the 8x32 matrix:

JX = JΘ · JΨ(Φ(X)) · JΦ(X). (4)

Since X has covariance matrix ΣX = σ2I32, the covariance of f̃ is the 8x8 matrix

Σ f̃ (X) = JX ΣX JT
X = σ

2JX JT
X . (5)

Jacobian of SVD. Let us denote F̃ =

 f̃1 f̃2 f̃3

f̃4 f̃5 f̃6

f̃7 f̃8 1

 .

As explained earlier, one has to impose rank(F) = 2 by SVD. Let F̃ = UDV T be the
SVD decomposition of F , where U and V are orthogonal matrices and D is the diag-
onal matrix made of the so-called singular value, sorted in increasing order. Imposing
rank(F) = 2 simply consists in computing

F = UD

1 0 0
0 1 0
0 0 0

V T (6)



The 9x9 Jacobian matrix of this transformation is then computed. The derivatives:

∂F
∂Ei, j

=
∂U

∂Ei, j
D

1 0 0
0 1 0
0 0 0

V T +U
∂D

∂Ei, j

1 0 0
0 1 0
0 0 0

V T +UD

1 0 0
0 1 0
0 0 0

 ∂V
∂Ei, j

T

(7)
yield the column i+3∗ ( j−1) of Jacobian matrix JSV D(F̃).

Since coefficient F̃33 is fixed, one gets in the end the covariance matrix of F :

ΣF = JSV D

(
Σ f̃ 08,1

01,8 0

)
JT

SV D. (8)

Papadopolo and Iourakis [14] give an elegant computation of the derivatives ∂U
∂Ei, j

,
∂D

∂Ei, j
and ∂V

∂Ei, j
. We do not reproduce it here for the sake of conciseness. Let us notice

that the Jacobian of the SVD was seemingly first derived in [12]. Let us also remark that
the Jacobian of the SVD makes it possible to derive the uncertainty of the least-square
estimate of F from n > 8 points. In this case, Eq. 2 would indeed become f̃ = f̃ +c.

3 Epipolar line uncertainty and application to robust
fundamental matrix estimation

3.1 Epipolar line uncertainty
We give in this section a digest of the theory from [8], with explicit formulas. We consider
the map φ : (F,x) 7→ l = Fx

||Fx|| which associate the normalized vector l representing an
epipolar line with a fundamental matrix and an image point. The propagation property
(up to a first order approximate) involves that l has mean l = Fx/||Fx|| and covariance
matrix Σl = JF,xΣF,xJT

F,x. Assuming that F and x are independent2, one obtains:

Σl = JF ΣF JT
F +σ

2JxJT
x (9)

where JF and Jx are the Jacobian of φ with regards to F and x.
To permit reproducibility of our work, we give here the explicit formulations of JF

and Jx. Let us note Fx = (L1,L2,L3)T and N = ||Fx||2. Then

JF =
1
||Fx||

 x−L2
1x/N y−L2

1y/N 1−L2
1/N −L1L2x/N −L1L2y/N −L1L2/N −L1L3x/N −L1L3y/N −L1L3/N

−L1L2x/N −L1L2y/N −L1L2/N x−L2
2x/N y−L2

2y/N 1−L2
2/N −L2L3x/N −L2L3y/N −L2L3/N

−L1L3x/N −L1L3y/N −L1L3/N −L2L3x/N −L2L3y/N −L2L3/N x−L2
3x/N y−L2

3y/N 1−L2
3/N

 (10)

Jx =
1
||Fx||

F21 −L2(L1F11 +L2F21 +L3F31)/N F22 −L2(L1F12 +L2F22 +L3F32)/N
F11 −L1(L1F11 +L2F21 +L3F31)/N F12 −L1(L1F12 +L2F22 +L3F32)/N
F31 −L3(L1F11 +L2F21 +L3F31)/N F32 −L3(L1F12 +L2F22 +L3F32)/N

 (11)

Now (l− l)T Σ
−1
l (l− l) follows a χ2 distribution with r degrees of freedom (where r is

the rank of Σl). It is a consequence of the classical property that Σ
−1/2
l (l− l)∼N (0, Ir);

the random variable is thus the norm of a normalized Gaussian vector. Here r = 2 since
l = Fx/||Fx|| has 2 degrees of freedom.

As shown in [8], with probability α a line l seen as a realization of the random process
Fx/||Fx|| lies within the hyperbola defined by

2this makes sense if x is not taken into account when estimating F .



Ck = llT − k2
Σl (12)

where F2(k2) = α and F2 is the cumulative χ2
2 distribution. See [1] for a discussion on the

bias introduced by the first order propagation theorem in the estimation of C.

3.2 Adapting Moisan and Stival’s ORSA

We derive now from what precedes a robust estimation of F by sorting out inliers from
a dataset of correspondences. It is based on Moisan and Stival’s ORSA3 [11], which is
another robust estimation algorithm of the fundamental matrix. ORSA has been shown
to outperform existing methods such as M-estimators, LMedS and RANSAC. The main
difference with RANSAC-like methods is that the consensus is not build on “hard thresh-
olds”, but a measure (called meaningfulness) represents a trade-off between the number
of detected inliers and their fitness to the model. It is based on a so-called “a contrario”
model (see the books [2] and [5] and references therein for a comprehensive account). The
probability that a group of correspondences meets the epipolar constraint “by chance” is
estimated. The lower this probability, the more likely the correspondences are not casual
and are actually due to epipolar constraint.

Let us be more specific. A set of n correspondences M = (x j,x′j)16 j6n and a sub-
set S of cardinality k > 8 being given, a fundamental matrix F is estimated from 8 points
of S . We then estimate the probability that max{d(Fx,x′),(x,x′) ∈S } is below a given
value δ , under the hypothesis that 1) the x are fixed, and 2) the x′ are independent and
uniformly distributed in the second view. This assumption constitutes the statistical back-
ground process. All probabilities in the sequel are computed w.r.t. this process. At the
end of the section, we see how to modify this background process in order to take into
account uncertainty of F .

Proposition 1 Pr
( 2D

A max{d(Fx,x′),(x,x′) ∈S }6 δ
)

6 δ k−8

where D and A are respectively the diameter and the area of the second view.

Proof: Successively :

Pr
(

2D
A

max
{

d(Fx,x′),(x,x′) ∈S
}

6 δ

)
= Pr

(
∀(x,x′) ∈ S,

2D
A

d(Fx,x′) 6 δ

)
=

(
Pr
(

2D
A

d(Fx,x′) < δ

))k−8

The latter equation stands because d(Fx,x′) = 0 for the 8 correspondences used in F
estimation and the x′s are independent.

Now a simple geometrical argument gives Pr(d(Fx,x′) < δ ) 6 2Dδ

A (see [11]).

The meaningfulness of (S ,F) is then defined, motivated by Prop. 2.

Definition 1 (S ,F) is ε-meaningful if (n−8)
(n

k

)(k
8

)
αk−8 6 ε

with α = 2D
A max(x,x′)∈S d(Fx,x′), and k and n defined as above.

Proposition 2 The expected number of ε-meaningful sets in the background process is
less than ε .

3stands for Optimized Random Sample Algorithm



Proof: The proof is classical (though the presentation here slightly differs from the orig-
inal one in [11] where the 7 point method is used). Denoting by N = (n− 8)

(n
k

)(k
8

)
and by χi the characteristic function of the event “group Nr i is ε-meaningful”, one has:
E(χi) = Pr(α 6 (ε/N)1/(k−8)) 6 ε/N thanks to Prop. 1. Now, N groups are tested (there
are n−8 choices for k > 8,

(n
k

)
choices for the set S,

(k
8

)
choices for the 8 correspondences

to estimate F), thus ∑i E(χi) 6 ε .

ORSA algorithm consists in randomly choosing 8 correspondences, estimating the
corresponding F , building up the most meaningful (i.e. with the lowest ε) consensus
set S based on this F , and iterating. It returns the most meaningful consensus set, which
has ε << 1. It means that this set cannot be the result of the background process. Def. 1
means that this algorithm realizes a trade-off between the size of the consensus set and
the fitting to the model. Let us notice that ORSA has no parameter to be tuned by the user.

Adapting ORSA to the presented probabilistic model. In original ORSA, the back-
ground process simply states that the points of the second view are independent and uni-
formly distributed. Let us adapt it to our framework. We suppose now that the points
x j and x′j (1 6 j 6 n) are independent random variables with normal density fx,σ of
mean x = x j (resp. x = x′ j) and covariance σ2I2.

One shall compute for every x and x′ the probability that a point x′ lies beneath a
given distance δ from the epipolar line Fx. We now give a precise meaning to the
distance d so that Pr(d(Fx,x′) 6 δ ) can actually be computed. In the original ORSA
algorithm, d is simply 2D/A multiplied by the Euclidean distance between x′ and the
epipole line Fx. In fact, as can be seen from the proofs, all what we need is the property
Pr(d(Fx,x′) 6 δ ) 6 δ , which holds in the original ORSA because of this particular choice
of d and of the uniform distribution of the points x′. In our situation x, x′, and F are ran-
dom variables. The probability can be expressed as:

Pr(d(Fx,x′) 6 δ ) =
∫

x′∈R2
fx′,σ (x′)Pr(d(Fx,x′) 6 δ |x′) dx′. (13)

From Eq. 12, we know that with probability F2(k2(x′)) (such that x′TCk(x′)x′ = 0) Fx lies
within the conic Ck. We therefore set d(Fx,x′) = F2(k2(x′)). Then,

Pr(d(Fx,x′) 6 δ |x′) = Pr(F2(k2(x′))|x′) 6 δ ) 6 δ . (14)

This latter inequality stands because when x′ is fixed, k2(x′) is a realization of a χ2
2 pro-

cess and F2 is precisely the cumulative distribution function of χ2
2 . As a consequence,

Pr(d(Fx,x′) 6 δ ) 6
∫

x′∈R2 fx′,σ (x′)δ dx′ = δ , and the desired inequality holds.
All what we need is therefore to replace α in Def. 1 by α ′ = F2(k2(x′)). Proposition 2

still holds, the expected number of ε-meaningful sets in the background process4 is < ε .
Groups with ε << 1 are not likely to be due to the background model, independence
assumption is indeed not valid and correspondences are due to the epipolar constraints.

Remark that the criterion at hand is F2(k2) where

k2 =
(lT x′)2

x′T Σlx′
=

(x′T Fx)2

||Fx′||2 x′T Σlx′
. (15)

Compared to the classical linear least square estimator (minimize Σ(x′T Fx)2), the con-
straint is relaxed when the confidence on the epipolar line Fx = l is poorer. Note that

4here, independent points in each view following laws of the kind N (x,σ2I2).
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Figure 1: Notre-Dame cathedral seen from two different viewpoints (top) and the 491 Sift corre-
spondences (bottom, correspondences are marked by a straight line between the left and the right
points of interest). We use the popular criterion which consists in matching a point of left image
with a point of right image if this latter point is the nearest neighbor of the former, and if the ratio
between their distance and the distance to the second nearest is upon some threshold [10]. Note that
most actual matches belong to the cathedral and the building (in the background), and some of them
belong to the tree on the left (in the foreground). There are approximately 10% of wrong matches.

the criterion of [15] is (with our notations) (x′T Fx)2

f T ΣM f . While our criterion is based on the
uncertainty on the epipolar lines, this latter criterion directly comes from the Mahalanobis
distance between correspondences, that is, the uncertainty on the image points.

Remark that the whole process is symmetrizable w.r.t. the two views, by considering

k2 =
(x′T Fx)2

||Fx′||2 x′T Σlx′
+

(x′T Fx)2

||FT x||2 xT Σl′x
(16)

which follows a χ2 distribution with 4 degrees of freedom. We do not discuss it further.

4 Experimental assessment
We propose in this section a proof-of-concept experiment of the preceding modified-
ORSA algorithm. We do not discuss the algorithmic choices here, and simply use the
same crafty algorithm as in [11]. Let us recall that the genuine ORSA is based on the 7
point algorithm instead of the 8 point version used here but the difference is not notice-
able. See captions of the figures for the discussion.

Note that the aim of what is proposed is not to increase the accuracy of F estimation,
but to select a set of inliers as large as possible and not concentrated on e.g. a dominant
plane. This is crucial in structure and motion problems: F estimation should be proceed
over a set of correspondences that represents well the overall motion. The output of our
algorithm is intended as the entry of a non-linear reestimation or a guided matching stage.
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Figure 2: Top: Moisan and Stival’s 8 point ORSA; 426 correspondences consistent with the epipo-
lar constraint. Bottom: proposed modified-ORSA: 424 consistent correspondences. The 10 red
matches on the bottom pair of images correspond to the most uncertain epipolar lines. All of them
are indeed marginal compared with the mass. The fundamental matrix is estimated on the points
belonging to the background; the correspondences on the tree on the foreground lead consequently
to more uncertain epipolar lines. This is assessed by considering the trace of the covariance matrix
of these epipolar lines. The 10 highest value correspond to correspondences between points on the
tree (in red). One wrong correspondence can be seen; however Fig. 4 shows that the distance to the
epipolar is quite low, such a case simply cannot be resolved from two views.
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Figure 3: Histograms of the distances from the image points in the right image to the epipolar
line computed from the corresponding image point in the left image. Left: ORSA, right: modified-
ORSA. All image points from the ORSA consensus set lie less than half a pixel from the corre-
sponding epipolar. The proposed modified-ORSA is less conservative w.r.t. this point and enables
distances up to 2 pixels. Indeed, our criterion does not minimize the distance to the epipolar and is
relaxed w.r.t. the uncertainty of the estimated epipolar lines. Note that these histograms show that
our method cannot be reduced to simply increasing the distance threshold.


