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ABSTRACT

DIn this paper 1, we propose a shape-based variational
framework to curve evolution for the segmentation of tongue
contours from MRI mid-sagittal images. In particular, we first
build a PCA model on tongue contours of different articula-
tions of a reference speaker, and use it as shape priors. The
parameters of the curve representation are then manipulated
to minimize an objective function. The designed energy in-
tegrates both global and local image information. The global
term extracts roughly the object in the whole image domain;
while the local term improves precision inside a small neigh-
borhood around the contour. Promising results and compar-
isons with other approaches demonstrate the efficiency of our
new model.

Index Terms— image segmentation, variational methods,
shape, speech analysis, image registration

1. INTRODUCTION

Articulatory modeling of the vocal tract, or especially the
tongue, is crucial for many applications. Speech training for
hearing impaired children or in second language learning is
one example, where the visual feedback can efficiently sup-
plement the auditory feedback. Such a model also has poten-
tial interest for studies on articulatory synthesis.

MRI provides us with a convenient and powerful tool
for observing the internal articulators which are involved in
speech production. In this study, we acquired 3D MRI data
with a group of articulations from different speakers. With
the help of the tongue model of a reference speaker, we aim
to extract tongue contours from mid-sagittal images of a new
speaker, and then to build his/her tongue model. This enables
us, in the future, to compare tongue models between speak-
ers, and explore how to adapt the reference speaker’s tongue
model to the new speaker. However, segmenting tongue con-
tours is a hard task. First, the tongue is the most flexible organ
of all the active articulators. It could move near other edges in
the oral cavity, such as the palate, the lips and the teeth, which
may disturb the segmentation process. Second, due to a quite
long acquisition time of MRI data, the speaker is required
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to artificially sustain a sound. It is extremely difficult to
maintain one’s articulators always in a correct position during
an acquisition. Boundaries may be smeared due to speaker
movements. Third, even for the same articulation, tongue
contours of different speakers could be very varied because
of anatomical variations. Moreover, one may have a special
pronunciation strategy. This greatly increases the difficulties
of adaptation of the tongue model between individuals.

We briefly review previous work we believe to be the
most relevant to the presented method. [1] proposed a popu-
lar model that has been frequently used in speech processing.
A PCA-guided articulatory model is built to control tongue
shapes in 2D. [2] developed active contours that use a shape
model defined by a PCA. The curve evolves locally based
on image gradients and curvature, and globally towards the
MAP estimate of position and shape of the object. [3] adopted
an implicit representation of the segmenting curve and cal-
culated pose parameters to minimize a region-based energy
functional. In this paper, we introduce a robust variational
framework for segmentation. Following the work in [4]
and [5], we construct a total energy including both global
and local image statistics. Shape priors are incorporated into
segmentation via a PCA model. We describe this framework
in section 2. The implementation details are discussed in
section 3. In section 4, we present results obtained using
the proposed framework, and make comparisons with other
approaches. We conclude in section 5.

2. THE FRAMEWORK

2.1. Acquisitions of the data

We used 3D MRI data of four speakers: three males and
one female, with strong morphological differences. A male
speaker named M0 is the reference speaker, because he has
the most articulations in our database. The corpus of M0 con-
sists of a set of 39 sustained articulations designed so as to
cover the range of French articulations as wide as possible.
They are the vowels [i, e, E, a, O, o, u, y, ø, œ, ã, ε], and the
consonants [S, s, k, p, t, l, r, f] in combination with one of three
contexts [a, i, u]. A 3D MRI of a neutral position was also ac-
quired. At the moment, the other three speakers only have
parts of this complete corpus: the male speaker named M1
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Fig. 1. An example of the mid-sagittal image and con-
tours. (a): all the contours in the training set (red lines) and
their mean contour (green line); (b): the mid-sagittal image of
M0’s sound [a] and its tongue contour drawn manually (red).

has 34 articulations; the male speaker named M2 has 20 artic-
ulations; and the female speaker named F1 has only 10 vowel
articulations. For each speaker, rigid registration is performed
between the neutral and the other articulations to compensate
for different positions between the acquisitions.

2.2. Curve representation

Though we are interested in buiding 3D models of the tongue
in the near future, we only consider in this paper 2D models
built in the midsagittal plane.

To represent curves in the process of segmenting an object
in an image, we chose the PCA-based shape model proposed
by [6]. PCA has the ability to capture the main variations
of a training set while removing redundant information and
noise. To build this shape model, we first performed 3D rigid
registration based on mutual information between M0’s ar-
ticulations and his neutral position, and then drew manually
the tongue contours of M0’s 39 registered mid-sagittal images
(see red lines in Fig. 1(a)). The contour starts from the bottom
of the lingual frenulum and ends at the epiglottis, as shown
in Fig. 1(b). The advantage of such a contour is that both
extremities have physical point correspondences. These con-
tours were used as the training set for the PCA. As a result,
when using the p eigenvectors corresponding to the largest
eigenvalues, a novel shape, C, of the same class as the train-
ing set, can be approximated by C(w) = C̄ +

∑p
i=1 wiδCi,

where C̄ is the mean shape, and δCi is the eigenvector of the
covariance matrix of the data. In this sense, each shape can
be represented by a vector of eigencoefficients w.

Choosing p is crucial but difficult. p should be large
enough to be able to capture the dominant shape variabilities
presented in the training set, and to describe possible differ-
ences of tongue contours between speakers. On the other
hand, p should not be too large in order to avoid undesired
details which are true for a particular training shape. In all the
experiments, we set empirically p equal to 15, whose fitting
accuracy is 99.87%. In fact, with only 6 components, the fit-
ting accuracy has already reached 97.6%. Although the first
6 PCA bases are enough to represent roughly the curve itself,

we found that using more principal components is necessary
to facilitate convergence to a proper minimum during energy
minimization of the variational model.

2.3. Pose parameters

As the built model depends on the head position of the refer-
ence speaker, we need to roughly align the head of the con-
sidered and of the reference speeaker. This way, M0’s tongue
model is roughly positionned in the right way with respect
to the considered speaker and the deformation capabilities
of the model can be used to detect the actual boundaries of
the tongue. Note that we do not aim at aligning the tongue
shapes in this stage. We only want to aligne the heads so that
the model can be efficiently used to detect the current shape.
To perform such an alignment, a 2D affine registration based
on mutual information is computed for a selected articulation
(we used a vowel articulation). Using the same affine reg-
istration, for any other articulation, the target speaker’s mid-
sagittal image was thereby roughly registered to M0’s corre-
sponding mid-sagittal image.

The above registrations have tackled the scale and the
head motion between speakers. However, due to different ar-
ticulation strategies and different anatomical properties, trans-
lation could exist for the vocal tract. Hence, a translation vec-
tor r is added as a supplementary parameter. The new de-
scription of shapes is then given by

C(w, r; x) = C̄(x̃) +
p∑

i=1

wiδCi(x̃) +
[
r1

r2

]
. (1)

2.4. Image segmentation

Given a curve C, we propose the following energy functional
to address the problem of tongue contour extraction from a
given image I . It is composed of two region-based energies:

E = αEG + EL, (2)

where the global energy term EG describes image informa-
tion about pixels in the whole image domain Ω; while the
local energy term EL introduces image information inside a
small neighborhood of points along the contour C. α is a
constant to balance contributions of the two terms. It is worth
pointing out that the usual regularization term of boundary
length is not needed in our model, since the PCA model can
already ensure contour smoothness. Hereafter, we will dis-
cuss in detail EG and EL.

The global energy term EG adopts the Chan-Vese model
proposed in [4]. EG computes the optimal approximation of
an image I as a piecewise constant binary function. It is writ-
ten as

EG(C) =
∫

Cin

(
I(x)− µ

)2
dx + β

∫
Cout

(
I(x)− ν

)2
dx,

(3)



where Cin and Cout denote respectively the region inside C
and the region outside C; β is a weight; and the values of µ
and ν, depending on the evolving curve C, are the averages
of I in Cin and in Cout. Since our tongue contour is an open
curve, we link the two extremities by a straight line to form
a closed curve. We assume that the pixels inside (or outside)
this closed curve belong to the region Cin (or Cout). Thanks
to the introduction of image information from the entire Ω,
the initial curve does not necessarily have to be very close
to the object to be detected. In other words, EG is capable
of extracting objects roughly in a large scale. However, the
segmentation will obviously not be precise if the image in-
tensities in either Cin or Cout are not homogeneous. For this
reason, we also need the local energy term EL to segment
accurately objects in a relatively small scale.

EL takes the form of the local binary fitting energy pro-
posed in [5]. The principle of this model is to insert a kernel
function into the global binary fitting Chan-Vese model [4],
so as to define a small neighborhood around the considered
pixel x. EL is defined as

EL(C) =
∫

Ω

{∫
Cin

K(x− y)
(
I(y)− u(x)

)2
dy

+ β

∫
Cout

K(x− y)
(
I(y)− v(x)

)2
dy
}
dx, (4)

where the kernel function K with a localization property is
chosen as a Gaussian kernel [5] with a scale parameter σ = 3.
To simplify the parameter setting, β is same as the one in
Eq. (3), and tunes the effects coming from the pixels outside
the contour. u(x) and v(x) (see details in [5]) are two values
that fit image intensities in a neighborhood centered in point
x, and thus vary in different x. Clearly, for each center point
x, when the integrand of Eq. (4) is minimized, the contour C
can be evolved more precisely to the object boundary accord-
ing to local fitting criteria.

3. IMPLEMENTATION

We employ gradient descent algorithm to minimize E with
respect to the PCA eigencoefficients w and the translation pa-
rameters r in Eq. (1). Since all the mid-sagittal images of
non-reference speakers have been registered to M0’s data, the
initial contour C0 for the evolution is M0’s tongue contour for
the corresponding sound. The initialw0 is thus determined by
projecting C0 on the PCA bases, and r0 = [0, 0].

For a curve C, we compute image statistics µ, ν, u(x) and

v(x). We then derive the gradient of E, with respect to C:

∂E

∂C(x)
=N(x)

{
α
{(
I(x)− µ

)2 − β(I(x)− ν
)2}

+
∫

Ω

K(y − x)
(
I(x)− u(y)

)2
dy

− β
∫

Ω

K(y − x)
(
I(x)− v(y)

)2
dy
}
, (5)

where N(x) is an outward normal vector at point x. The
evolution equations for w and r are

∂wi

∂t
= −∂E

∂C
· δCi, ∀i ∈ {1, · · · , p} (6a)

∂ri
∂t

= −∂E
∂C
· δri, ∀i ∈ {1, 2} (6b)

with δr1 = [1, 0, · · · , 1, 0] and δr2 = [0, 1, · · · , 0, 1]. The
time evolutions of w and t use the forward Euler method. In
order to guarantee reasonable shapes, we chose empirically
the constrained interval [−5

√
λi, 5
√
λi] for each wi, where

λi is the eigenvalue of the covariance matrix of the data. The
updated eigencoefficients and translation parameters are then
used to determine the updated location of the segmenting
curve, which will be used to calculate local and global image
statistics in the next iteration.

4. EXPERIMENTAL RESULTS

We applied the proposed framework to segment tongue con-
tours of 3 non-reference speakers. In all the experiments,
validation was performed by visual inspection of the results.
Fig. 2 shows the results on M1’s mid-sagittal images. Due to
lack of space, we present here only parts of the results. The
green curve denotes the initial contour, - i.e. M0’s tongue
contour of the corresponding sound-, which is quite differ-
ent from the ideal boundary for some sounds e.g. [pu], [fu],
etc... The magenta curve denotes the final result obtained us-
ing our framework. The segmentation was very successful:
the tongue contours of most sounds have been extracted ac-
curately. We also obtained satisfactory results on M2’s and
F1’s data, as shown in Fig. 3.It means that our framework
accounts for strong morphological differnces. However, ac-
curacy can be further improved when a clear boundary does
not exist, e.g. M2’s sound [ki] (Figs. 3(j)). Furthermore, two
extremities of the contour still do not have perfect correspon-
dences. For example, the left extremity of the contour for F1’s
sound [a] (Fig. 3(o)) actually corresponds to the apex.

In the proposed energy, there are two weights α and β to
decide. The α value was fixed for a given speaker. α was
generally small so that the local energy had dominant effects.
If tongue contours between M0 and the target speaker were
very distinct, we set a larger value to alleviate convergence to
local minima. In our experiments, for M1 and M2, α = 0.08;
while for F1, α = 0.045. On the other hand, β was normally



(a) [i] (b) [e] (c) [E] (d) [a] (e) [O] (f) [u] (g) [y] (h) [ø] (i) [œ]

(j) [ã] (k) [ẽ] (l) [Sa] (m) [si] (n) [ka] (o) [ti] (p) [lu] (q) [ru] (r) [fu]

Fig. 2. Results on M1’s mid-sagittal images. Green curve: initial contour; magenta curve: final result obtained using our model.

(a) M2 - [i] (b) M2 - [e] (c) M2 - [a] (d) M2 - [o] (e) M2 - [u] (f) M2 - [y] (g) M2 - [ø] (h) M2 - [œ] (i) M2 - [Si]

(j) M2 - [ki] (k) M2 - [t] (l) M2 - [l] (m) F1 - [i] (n) F1 - [E] (o) F1 - [a] (p) F1 - [o] (q) F1 - [ø] (r) F1 - [œ]

Fig. 3. Results on M2’s and F1’s mid-sagittal images. Green curve: initial contour; magenta curve: final result obtained using
our model.

Fig. 4. Comparisons. From left to right: results obtained
on M1’s sound [pu] respectively using the model in [4], the
model in [5] and our proposed model.

set equal to 1 for most experiments (73.8%), but when the
initial contour was too far away from the desired contour, we
needed to tune it by hand. This approach was thus quasi-
automatic. How to develop a completely automatic algorithm
will be a topic for future research.

To evaluate the performance of the new total energy, we
compared it to the models in [4] and [5]. Fig. 4 shows some
examples of these comparisons. Clearly, the result obtained
using the Chan-Vese model [4] was not correct due to sim-
plicity of the piecewise constant binary function; while the
model in [5] could converge to undesired edges without the
guide of global information.

5. CONCLUSIONS

We have proposed a novel variational framework for image
segmentation. Our model energy combines local and global
image statistics together to guide curve evolution. We incor-
porated shape priors via a statistical PCA model to increase
robustness of the algorithm. Experiments demonstrate the ef-
fectiveness of the framework even for strong morphological
differences. Comparisons to previous methods also show the

importance of both energy terms. These first results seem
to prove that when considereing a sufficient number of PCA
components, the reference model brings sufficient priors to
segment any speaker. This hypothesis has to be confirmed on
more speakers.
We plan to use the obtained results to build the model of the
tongue for a new speaker, and hence to realize tongue model
adaptation. However, we still have to solve the problem of
point correspondences of the open tongue curve. We are cur-
rently working on adding certain constraints into our model
to control the two contour extremities.
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