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Abstract

One of the biggest obstacle to building effective augmergatity (AR) systems is
the lack of accurate sensors that report the location of$kein an environment during
arbitrary long periods of movements. In this paper, we presa effective hybrid
approach that integrates inertial and vision based teolgies. This work is motivated
by the need to explicitly take into account the relativelppaccuracy of inertial sensors
and thus to define an efficient strategy for the collaborgineess between the vision
based system and the sensor. The contributions of this paperthreefold: (i) our
collaborative strategy fully integrates the sensitivityoe of the sensor : the sensitivity

is practically studied and is propagated into the collatiegrocess, especially in the



matching stage (ii) we propose an original online synclration process between the
vision based system and the sensor. This process allowsuge tithe sensor only when
needed. (iii) an effective AR system using this hybrid tiagks demonstrated through

an e-commerce application in unprepared environments.
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1 Introduction

Augmented reality systems supplement the real world wittual (computer generated)
objects that appear to coexist seamlessly in the same spdhbe eeal world. Potential ap-
plications of AR are important and include maintenance apair of complex equipments,
medical visualization, collaborative work, and applioas in cultural heritage [1]. Though
promising, AR is barely at the demonstration phase todaysawdral challenges must be
overcome to prove the full potential of AR. Despite rematkgtrogress in the field in the
late 1990s, there are still major obstacles limiting theewidse of AR both for technolog-
ical limitations and because of insufficient robustnessauawliracy of the tracking stage in
practical situations. The term tracking is used here torilgsceal time pose recovery from
monocular video streams.

The tracking task is difficult because registration mustdieeved sequentially at video
rate, with a high accuracy and a good repeatability duritgtrary long periods of move-

ments. This means that the accuracy of the pose should bathe at the beginning of



the applications and at the end of the process. Systemsrthatlp accurate and repeatable
registration are of interest because they would make plesadw applications areas that
cannot be handled by existing AR systems.

Whatever the technology used for tracking, most AR systesqsiire carefully con-
trolled environments or restrict the motion of the user tewge robustness of the registration

stage over time:

¢ Inertial tracking are a popular choice due to their high fregcy response and their
independence from external beacons. However, they ladk term stability due to

sensor noise and drift. Their accuracy is generally pooth@range [.25, 1] degree)

e Magnetic and ultrasound sensors have been used successfudonfine the user to

an instrumented and small working volume.

e Vision-based methods are generally more accurate as thmgndeon features that
are directly extracted from the images to be augmented. Meryvéheir robustness
is tightly related to the efficiency of feature extractioatking through the sequence.
They cannot generally keep up with quick or abrupt motiordlise the 2D tracking

may fail in these conditions.

Using a single modality then leads AR systems to restricbbozdnstraint the move-
ments of the user and prevents the user to walk and look ampwiepleases. The idea

to make collaborate two technologies in order that the sez@moplementarity nature helps



overcome camera/sensor specific deficiencies is not new asgieneered by [2] for au-
tonomous navigation of a mobile robot. In AR, researchedestavith State in 1996 [3],
followed by [4, 5]. In most applications, the strategy to ¢one the sensors is the same for
every frame: the inertial or gyro data are used to prediduiegpositions and to make easier
feature detection and tracking [6, 5]. A Kalman filter is thedten used to reduce drift and
to fuse the data [7]. Unfortunately, Kalman filters requiddrsematic model of the sensor.
This model is usually based on the hypothesis of regularands constant acceleration)
and are thus unableto take into account non-systematid¢seasrabrupt head motions. To
overcome this problem, we took a different approach anddgekcio use the inertial sensor
only when needed, that is when we detect that the vision bastdm does not give reliable
results. This approach has some ideas in common with [8]arctimtext of mobile robots
guided by odometry and gyro sensors: localization is alw@sed on odometry and the
authors switch to a gyroscope only when catastrophic fedaccur.

Our method rests on the same strategy and we here proposethadwehich only
uses the inertial sensor when the confidence in the visioadbagstem is limited. The

contributions of this paper with respect to existing apptas in the field are the following:

e We do not attempt to fuse the data. The sensor data are hetetauggiide or to

re-initialize the matching stage. This avoids to put caists on the user’s motion.

e We propose an efficient mean to detect when the confidence inidton based system

is not sufficient and must be supplemented by the sensor data.



e We do not attempt to update and to correct the drift of the @enRelative sensor
data are only used between two image acquisitions. Heneéféltts of drift are less

important.

e Hybrid systems require synchronization among differensses. Synchronization is
of special importance for high motion rate because syndéhabion delay will cause
large error in image prediction and the system will likelyl.falrhe synchronization
problem is seldom addressed in AR though it is very difficoiathieve in practice as
noted in [5]. One of the contribution of the paper is to prdvattthe synchronization
delay between camera and sensor is generally not constantime and we propose

an efficient solution to evaluate this delay on line.

The efficiency of our hybrid system is demonstrated on ounglaased AR system [9]
associated with the inertial sensor MT9 (Xsens). It mustdiedhthat our method is suited to
any camera tracking system based on the following framewhrloses are obtained from
feature correspondences tracked over consecutive fradieA numeric criterion which
enables to judge if the pose is computed with sufficient bbdltig must be available. A
typical example of such a criterion is the number of feattines have been correctly tracked
in the current frame (inlier features). This informatiorgsnerally obtained by introducing
M-estimators or the RANSAC paradigm in the pose computatigorithm. Many systems
can be found in the literature that implement this architex{10, 11].

The paper is organized as follows: the accuracy of the mlesttnsor is assessed in



section 2. Camera/sensor collaboration is extensivelgrdes in section 3 and section 4 is
devoted to our original algorithm for on-line sensor/caangynchronization. The complete
system developed within the European ARIS project as wakksslts are demonstrated in

section 5 and 6.

2 Sensor accuracy

Inertial sensors are three-degree of freedom orientateckérs that combine accelerom-
eters and magnetometers to compensate for otherwise tedinmcreasing errors from
the integration of rate of turn data (gyroscopes). Receraiacks in the miniaturization
of all these components made it possible to integrate theweiyn small boxes (typically
39 x 54 x 28 mm), distributed at reasonable rates (example manufastare Xsens and In-
terSense). As they are based on natural physical phenonageniotio not require any special
instrumentation of the environment, they are well suitedutdoor AR. However, technical
specifications given by manufacturers indicate d° RMS accuracy for the most recent
products, which is unfortunately still insufficient to olsted convincing augmented scenes.
In this section, we present accuracy tests we performed aartecglar inertial sensor
(the Xsens MT9-B), in order to assess the accuracy of thid &frsensors, and check if a
Gaussian distribution is well suited to describe the emmesobtain on the provided Euler
angles. In these experiments, the sensor was fixed on a cemputtrolled pan-tilt unit

(PTU), whose resolution was013°. Three sets of tests were performed, changing for each



set the alignment between the sensor and the PTU axes (tigwations are presented in
Fig. 1).

For each configuration, rotation commands of different ammgés (2, 5, 10, 15 and
20 degrees) were individually sent to each axis of the PTW(@l@tations per amplitude
and per axis). Means and standard deviations of the valwesded by the sensor and his-
tograms of the centered values are shown in figure 1. As theosemd PTU axes were
not perfectly aligned, the means we obtain for each amitu@ not exactly equal to the
requested amplitudes. However, two major information camierred from these results:
1. the accuracy of the angles provided by the sensor doesgroticantly depend on the
amplitude of the rotation and 2. the accuracy of the angld¢siméd around a particular
axis of the sensor depends on the initial orientation ofkis with regard to the PTU. For
example, angles aroundaxis are much more accurate in configuration 1 than in configu
ration 2. Actually, the vertical axis (with regard to the twof the sensor always provides
less accurate results than the horizontal axis. This isadtieetfact that magnetometers that
compensate the gyroscopes drift around the vertical agiseas accurate than accelerome-
ters that compensate the drift around non vertical axeedddmagnetometers are sensitive
to ferromagnetic perturbations of the environment, wheseelerometers are based on the
gravitational axis which is more reliable.

In practical situations, the sensor is fixed horizontallfttoecamera, so that theaxis is
initially up. In this situation, we expect a 3D Gaussian eaudhose mean is null and standard
deviations deduced from our sets of tests (namely= 0.499° ando, = o, = 0.155°).
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During the tracking process, standard deviations are potated online according to the

angles between the related axes and:tagis of the sensor in its initial orientation.

3 Camera-sensor collaboration

3.1 Hand-eye calibration

Integrating sensor data in vision-based camera trackiagréguires that the alignment be-
tween the sensor and the camera is known. Formally, thisistsnsf finding a rotation
matrix X that permits to deduce camera rotatidhgrom sensor rotations! (Fig. 2), ac-

cording to the following equation:
AX =XB (1)

The hand-eye calibration task consists of determiningimagrfrom this equation, applied
to several pairs of matrice$sand B (three at minimum), obtained from different orientations
of the camera-sensor device. Many methods have been pobfmselve the generated set

of equations. In this work we use the method proposed by Rativaartin [12].

3.2 Integration strategy

Our strategy for integrating sensor data in vision-basacking rests on the fact that the vi-
sion based system gives accurate position estimation {&mxvhen non-systematic events
such as head motions occur. The sensor is then used to pitnadasion system with a
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fair prediction of the tracked features despite the ocawreeof abrupt motions. Hence we
do not fuse sensor and vision data. Sensor data are only gsed® and to reinitialize the
vision process

We do not make a systematic use of the sensor data becauseltdiarely poor accuracy
may lead to incorrect pose estimation. The following exanihlstrates that point: thé9%
confidence limit of the sensor angle distribution error atsd in section 2 for the-axis
is equal t02.58 x o, = 1.29°. This corresponds to an horizontal image error of 23 pixels
(at the principal point) for a typical focal length of 1024els. This may have different
consequences, depending on how the sensor is used: if statacare used systematically
to provide the rotational part of the camera motions, thi wduce very inaccurate and
jittering augmentations; if sensor data are used systenibtito predict the position of the
features from their positions in the previous image, tragkwill fail in 1% of the cases for
a typical 20 pixels half-size research window, that is e¥y seconds in mean for a 20 fps
process.

Another reason for the non systematic use of the sensor st to synchronize sensor
and vision acquisition to perform hybrid estimation. Asioet in [5], accurate synchroniza-
tion is needed especially when large motion may occur ingégesnce. Indeed, approximate
synchronization may lead to associate a large motion piexdlizy the sensor to a wrong im-
age, making the system fail. However, experiments repdrteskction 4 proved that the
synchronization delay is not constant over time and musshmated online, inducing ad-
ditional processing time: the computation time of the widi@sed camera tracking depends

9



on caracteristics of each frames, and this variable timésézbe synchronized with data
acquisitions of the inertial sensor. Hence, due to reagtoonstraints, non-systematic use
of the sensor appear as the most appropriate cooperatioredvark between vision and

Sensor.

3.3 Sensor-based feature prediction

This paragraph explains how to integrate inertial sensta ttaguide the feature tracking
process, after an abrupt camera rotation occurred (whiategponds to the common case
of rapid head motions). However, the results presentedwbebn most of the time be
adapted to any kind of motion, providing that the approprsgnsor is used and its accuracy
guantified.

When a camera rotation occurs, the whole image is transimeeording to & x 3

matrix H calledhomography, given by [13]:

H=KBK™, (2)

where K is the camera intrinsic parameters matrix asdhe rotation matrix. This means
that a pixel at positiomn in the previous frame appears at positieh = Hm in the new
frame ¢(n andm’ are homogeneous coordinate vectors).

Therefore, combining equations (1) and (2) yields a fumctiavhich, assuming a sensor

rotation matrixA is known, provides a prediction of the new position of anyebix at
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coordinates:

p(m) = KX'AXK 'm. (3)

3.4 Error propagation

In addition of these predicted feature positions, our metpimvides optimal research re-
gions. These regions are confidence ellipses that are eotéy propagating sensor errors
during the calibration and acquisition processes.

Sensor error analysis yields a covariance matrix of the idex parameters: for the

inertial sensor, we get a covariance matrix of the Euleresgl, 54, v4:

o2 0 0
Ya=| 0 o2 0 |
0 0 o2

(inter-axes covariances have proven negligible in our Bxpnts). This matrix is used
to recover the covariance matriXy using error propagation from the hand-eye equation
(computation details are given in appendix). For a predigesitionm’ = p(m), we can

therefore compute a covariance maifrix, using the following linear approximation:

Yt = JX/mEXJE(/m + JA/mzAJZ/m’

where
— (29%p Op Op
JA/m - (3aA 0Ba a’YA)’
_ Op Op Op
JX/m o (801X Opx 3’YX)
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(camera intrinsic parameters are supposed exact and cethpetore the AR application).

This provides a confidence ellipse arount defined by equation
X'S X <921, (4)

9.21 being the99% confidence limit for a two degrees of freedom chi-square.

4 Online synchronization

To check and determine the synchronization delay betwessettwo devices, we first im-
plemented a procedure based on abrupt motion detectioner&@ebrupt motions where
performed in a same shoot of a scene that allows easy detedtdsual motions (Fig. 5.b).
Abrupt changes in rotation angles were matched to abruptggsin image intensities dis-
tribution (a criterion is proposed by Prager in [14] in thentaxt of the temporal calibration
of a freehand ultrasound probe). These experiments madeuwsbthat the synchronization
delay between the two devices is not constant over time (gee&Fwhere three successive
abrupt motions were applied in a same shoot and lead to nastartirecquisition delay).
This means that synchronization of the two devices must Henpeed online.

In our set-up, sensor data are always available before irdate Indeed, the time
needed to capture a video frame (here referred tacgagisition cycle) is large compared to
the time needed to sample information from the inertial senSor each acquisition cycle,
the relative sensor data acquired during the cycle are ceatpand allow us to compute the
sensor homography, that is the homography computed from the sensor during quisition
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cycle. These homographies will be used to guide featuréitrgovhen the vision-based
system fails.
The underlying ideas of our algorithm are explained on alsstit example (Fig. 4).

Three main steps are needed to perform on line synchroaizati

Identification of the vision based system failure

A decrease in the number of inliers (i.e number of points essfully matched by the sys-
tem) is a good mean to detect that the vision system is goifagi tdNon successful matching
is generally due to the fact that the corresponding poinaitside the research window and is
thus not detected by the system. The number of inliers isogglperelevant for planar-based
system because tracking planar structures can be madeolmrstrdue to homographic con-
straints [13]. In our example, this number decreases dadbtiin frame 11, which means

that sensor information is required in that frame.

Identification of the corresponding sensor data

Once a tracking failure has been detected, the correspgrsginsor homography has to
be identified. The principle of our method is to simulate tmepagation of the features
obtained just before failure, using each buffered sensardgraphy, and choose the one
that makes the matching process fail.

In the visual system, matching fails when the researchddrieées outside the research

region. Hence, the corresponding sensor data will alsorigecto a predicted point that is
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outside the research window. Our procedure amounts to ettbeshomography that makes
the number okensor-predicted inliers (features that are propagated inside the research re-
gion) decrease dramatically. In our example, this allowsouslentify at buffer position 3

the inertial data that correspond to the visual trackinfyifai It must be noted that another
possibility for sensor data identification may consist ittedéing abrupt variations in the
acquired angles. Unfortunately, this criterion is not valat as the effect of angles varia-
tions on the images also depends on the depth of the scenadhd camera position with
respect to the scene. As a result, some abrupt motion of thereecan be perfectly handled

by the vision-based system while others cannot be handled.

Use of the inertial data to re-initialize the matching stage

Once the corresponding sensor homography has been ideémtifositionp in the storing
buffer, inertial data can be used to re-initialize the matglstage. To this aim, homogra-
phies in the buffer are considered from positigrand the matching process is tried using
the accumulated homography. Accumulating homographiesdsssary as a rapid rotation

may last more than one acquisition cycle.

5 ARIS tracking system

The goal of the ARIS project was to provide new and innovafifRtechnologies for e-

(motion)-commerce application, where the products canresgnted in the context of their

14



future environment. A mobile AR-unit was developed, whebe@oduct models (e.g. fur-
niture) can be directly visualized on a real site, takingsistent geometry and illumination
of real and virtual objects into account. The user can chieelaesthetic result and the ac-
tual fit of the furniture item into the room, and also discusthwemote participants, taking
shared augmented technologies into account. This seatseribes parts of the system that
concern pose computation and interaction with the enviemmResults of the complete
tracker obtained on a reald-world scene are shown in figur& 8omplete video (called

VIDEOL1) is provided on our web site

Camera tracking

Our collaborative tracking system is based on the visiosedanethod we proposed in [9]:
key-points belonging to planar surfaces are tracked in@curts/e images, providing homo-
graphies that enable to update the pose (assuming the @ugiafithe planes are known).
False matches are identified using the RANSAC paradigm &:i@)), and sensor data are
incorporated according to the method presented in thismpapés results in a robust system
where the user is able to move with increased freedom. Tmgcis performed at 15 fps

on a classical laptop and web-cam configuration. The haed:albration is performed by

shooting a calibration target from different views. Makeare placed on the target in order

to automate the calibration process (Fig. 5.(b)).

lhttp://vwwv. loria.fr/equi pes/ magrite/ novi es/ cavw. ht m
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Reconstruction of the scene geometry

The geometry of the scene is needed both for tracking anddodling photometric and
geometric interactions between real and virtual objectsis §eometry is acquired offline
from a single image of the scene with the help of an interaatdconstruction tool. Intrinsic
parameters and the initial camera pose are recovered froostarpaid in a corner of the

room (Fig. 5.(c)).

Interaction with the environment

As camera poses are computed with respect to a world refefearme, synthetic objects can
be added in the real scene at any time of the tracking pro€egs %.(d-f)). These objects
can easily be placed in the real scene by sliding them on ttwveeed structure, mutual

occlusions and collisions between real and virtual objbetag automatically handled.

6 Results

6.1 Synthetic data

In order to assess the relevance of using confidence ellipse=ad of rectangle research
windows, we simulated thousands of hand-eye calibratiomiscamera / sensor rotations,
adding a Gaussian noise to sensor data (standard deviatienestaken as explained in
section 2). A relevant research region is a region that mepesithe probabilityP (inlier)

of getting the researched corresponding feature insidadgb®mn, while minimizing the
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number of non corresponding featurgsutliers included in that region. These values were
computed using rectangle research regions of differemissand ellipses corresponding to
different confidence limits in equation (4). Figure 6 givee evolution of#outliers in
function of P(inlier), for different numbers of point features randomly chosen inside
a 512 x 512 frame: the curve corresponding to elliptic regions is gafigrsignificantly
below the curve corresponding to squared regions. For ebgragypical 20 pixels half-
size research window yields to a mean number of 12 outlier2@60 points in &12 x 512
image. Using elliptic research regions with the same vafu@(onlier) reduces the number
of expected outliers to 2% less). This reduction is significant as it decreases theofisk

ambiguity as well and the computation time needed for thehiag process.

6.2 Real sequences

Figure 7.(a) shows the number of inlier correspondenceshtaimed in a miniature scene
sequence (see VIDEOS2 on our web site). Video trackingges®ds are indicated using
dashed bars. They correspond to abrupt motions that areedllhandled using sensor
information. The numbers of sensor-predicted inliers cota@ using the buffered sensor
homographies at frame 173 are shown in figure 7.(b). Thistilaies the relevance of using
this criterion for online synchronization (a fall is cleawbserved at position 1) instead of
the sensor rotation amplitude criterion which is less disgrant (Fig. 7.(c)).

Tracking was also performed on real-size scenes (see ousinel/IDEOS 3 and 4).
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The first one was shot in the basement of our laboratory (F)g.A8user made free mo-
tions inside the room, and virtual furnishings were addelihen Ten abrupt motions were
detected and well handled during this process. The secaneesee concerns an outdoor
scene that was shot from a camera put on a tripod (Fig. 9) aincnfiguration, the whole
image is transformed according to a homography. Sensamation was successfully used

at thirteen moments of that sequence.

7 Conclusion

We presented a hybrid approach for AR registration withgraéed inertial and vision tech-
nologies. The complete AR system was successfully denairdtin unprepared multi-
planar environments. Our framework brings significant ioygments to the AR system
by increasing the freedom of the user during the applicatiurthermore, our AR system
requires no specific or expensive hardware and can be usbdawibrdinary laptop and a
simple webcam.

Unlike existing approaches, we dot not attempt to perforsidiu of the two technolo-
gies at each frame of the sequence. On the contrary, wectetstei use of each sensor for
situations where its contribution is relevant. As a reswi, use sensor information only
when needed, that is when the pure vision-based systemdaitack the camera. In ad-
dition, sensor errors are measured and taken into accouheifeature matching process.

Finally, we address the camera/sensor synchronizatioblgmoand propose a method to
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resynchronize these two devices online.

There are several improvements and extensions that candetmaur approach. First,
the use of an inertial sensor only allows us to consider almatptional motions, as head
motions. If more general motions including a large transfapart have to be considered,
our method can be extended to the use of a position sensam&eextensions of the method
should concern the vision based system. For numerous pgsethins as ours, the pose
computation process is incremental and may progressivebrge because of successive
approximations. Markers, natural features or key-viewthascene could be used to detect

system divergences and reinitialize the tracking when seag.

Appendix: Error propagation in hand-eye calibration
Hand-eye matrixX is solution of the set of equations
A; X = XB;, (5)

where (A;, B;) are n sensor/camera rotation pairs. Our aim is to compute a caveei
matrix X x of the Euler angles:.yx, Bx, vx of matrix X, considering that camera rotations
B; are certain but sensor rotatiods uncertain.

Equations (5) can be written g$z, a) = 0, wherez is a vector of size 3 containing the

Euler angles of rotatioX, a is a vector of size&n containing the Euler angles of rotations
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A;, ando is a9n null vector. A first order approximation of(z, a) gives:

I P | S
f(x,a)—i-%(x,a)(x—x)—i-%(x,a)(a—a)wo,

wherea andz are the estimated values @andz. This leads to:

CYxC' = DI[X4] D,

whereC = 9L(z,a), D = %L(z,a) and[S4] is the3n x 3n matrix sa

z da

Therefore X x can be expressed as:

Sy = (C'C)ICHD [£.4] DIC(CTCO) L.
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(e) ®

Figure 5: Tracking and interaction in the ARIS system. (an@ea tracking: green segments
join the corresponding key-points between the current baghtevious frame. Red segments
are used to show outlier correspondences. (b) The handateation is performed using
markers on a box. (c) Camera parameters and scene geonetigtained using geometric
constraints from a single image. (d-f) Virtual objects alacpd with regard to the recovered
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Figure 6: The expected number of outliers in function of th@bability of getting the inlier

inside an elliptic or rectangular research region, foratight number of points.
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sensor-guided matching -------
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Figure 7: (a) Number of inlier correspondences and trackasg periods obtained in a

miniature scene sequence. (b),(c) Comparison of two spmitation criteria at frame 173
27

of that sequence.



Figure 8: Example results obtained at two instants of anandequence. Top: augmented
frames before an abrupt motion occurred. Middle: corregpoges obtained by using sen-
sor predictions (white segments are inlier correspondgriiack segment are outliers iden-

tified by RANSAC). Bottom: augmented scenes after the albmgiton occurred.
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Figure 9: A sensor-guided tracking result obtained in amloat sequence. Top: frame 486

with a virtual cube added. Bottom: frame 488 and the recalecgrespondences.
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