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Abstract

One of the biggest obstacle to building effective augmentedreality (AR) systems is

the lack of accurate sensors that report the location of the user in an environment during

arbitrary long periods of movements. In this paper, we present an effective hybrid

approach that integrates inertial and vision based technologies. This work is motivated

by the need to explicitly take into account the relatively poor accuracy of inertial sensors

and thus to define an efficient strategy for the collaborativeprocess between the vision

based system and the sensor. The contributions of this papers are threefold: (i) our

collaborative strategy fully integrates the sensitivity error of the sensor : the sensitivity

is practically studied and is propagated into the collaborative process, especially in the
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matching stage (ii) we propose an original online synchronization process between the

vision based system and the sensor. This process allows us touse the sensor only when

needed. (iii) an effective AR system using this hybrid tracking is demonstrated through

an e-commerce application in unprepared environments.

Keywords: Augmented reality, camera tracking, sensor fusion

1 Introduction

Augmented reality systems supplement the real world with virtual (computer generated)

objects that appear to coexist seamlessly in the same space as the real world. Potential ap-

plications of AR are important and include maintenance and repair of complex equipments,

medical visualization, collaborative work, and applications in cultural heritage [1]. Though

promising, AR is barely at the demonstration phase today andseveral challenges must be

overcome to prove the full potential of AR. Despite remarkable progress in the field in the

late 1990s, there are still major obstacles limiting the wider use of AR both for technolog-

ical limitations and because of insufficient robustness andaccuracy of the tracking stage in

practical situations. The term tracking is used here to describe real time pose recovery from

monocular video streams.

The tracking task is difficult because registration must be achieved sequentially at video

rate, with a high accuracy and a good repeatability during arbitrary long periods of move-

ments. This means that the accuracy of the pose should be the same at the beginning of
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the applications and at the end of the process. Systems that provide accurate and repeatable

registration are of interest because they would make possible new applications areas that

cannot be handled by existing AR systems.

Whatever the technology used for tracking, most AR systems require carefully con-

trolled environments or restrict the motion of the user to ensure robustness of the registration

stage over time:

• Inertial tracking are a popular choice due to their high frequency response and their

independence from external beacons. However, they lack long term stability due to

sensor noise and drift. Their accuracy is generally poor (inthe range [.25, 1] degree)

• Magnetic and ultrasound sensors have been used successfully but confine the user to

an instrumented and small working volume.

• Vision-based methods are generally more accurate as they depend on features that

are directly extracted from the images to be augmented. However, their robustness

is tightly related to the efficiency of feature extraction/tracking through the sequence.

They cannot generally keep up with quick or abrupt motion because the 2D tracking

may fail in these conditions.

Using a single modality then leads AR systems to restrict or to constraint the move-

ments of the user and prevents the user to walk and look anywhere he pleases. The idea

to make collaborate two technologies in order that the sensor complementarity nature helps
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overcome camera/sensor specific deficiencies is not new and was pioneered by [2] for au-

tonomous navigation of a mobile robot. In AR, researches started with State in 1996 [3],

followed by [4, 5]. In most applications, the strategy to combine the sensors is the same for

every frame: the inertial or gyro data are used to predict feature positions and to make easier

feature detection and tracking [6, 5]. A Kalman filter is thenoften used to reduce drift and

to fuse the data [7]. Unfortunately, Kalman filters require akinematic model of the sensor.

This model is usually based on the hypothesis of regular motion (as constant acceleration)

and are thus unableto take into account non-systematic events as abrupt head motions. To

overcome this problem, we took a different approach and decided to use the inertial sensor

only when needed, that is when we detect that the vision basedsystem does not give reliable

results. This approach has some ideas in common with [8] in the context of mobile robots

guided by odometry and gyro sensors: localization is alwaysbased on odometry and the

authors switch to a gyroscope only when catastrophic failures occur.

Our method rests on the same strategy and we here proposed a method which only

uses the inertial sensor when the confidence in the vision based system is limited. The

contributions of this paper with respect to existing approaches in the field are the following:

• We do not attempt to fuse the data. The sensor data are here used to guide or to

re-initialize the matching stage. This avoids to put constraints on the user’s motion.

• We propose an efficient mean to detect when the confidence in the vision based system

is not sufficient and must be supplemented by the sensor data.
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• We do not attempt to update and to correct the drift of the sensor. Relative sensor

data are only used between two image acquisitions. Hence ill-effects of drift are less

important.

• Hybrid systems require synchronization among different sensors. Synchronization is

of special importance for high motion rate because synchronization delay will cause

large error in image prediction and the system will likely fail. The synchronization

problem is seldom addressed in AR though it is very difficult to achieve in practice as

noted in [5]. One of the contribution of the paper is to prove that the synchronization

delay between camera and sensor is generally not constant over time and we propose

an efficient solution to evaluate this delay on line.

The efficiency of our hybrid system is demonstrated on our plane based AR system [9]

associated with the inertial sensor MT9 (Xsens). It must be noted that our method is suited to

any camera tracking system based on the following framework: 1. Poses are obtained from

feature correspondences tracked over consecutive frames.2. A numeric criterion which

enables to judge if the pose is computed with sufficient reliability must be available. A

typical example of such a criterion is the number of featuresthat have been correctly tracked

in the current frame (inlier features). This information isgenerally obtained by introducing

M-estimators or the RANSAC paradigm in the pose computationalgorithm. Many systems

can be found in the literature that implement this architecture [10, 11].

The paper is organized as follows: the accuracy of the inertial sensor is assessed in
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section 2. Camera/sensor collaboration is extensively described in section 3 and section 4 is

devoted to our original algorithm for on-line sensor/camera synchronization. The complete

system developed within the European ARIS project as well asresults are demonstrated in

section 5 and 6.

2 Sensor accuracy

Inertial sensors are three-degree of freedom orientation trackers that combine accelerom-

eters and magnetometers to compensate for otherwise unlimited increasing errors from

the integration of rate of turn data (gyroscopes). Recent advances in the miniaturization

of all these components made it possible to integrate them invery small boxes (typically

39×54×28 mm), distributed at reasonable rates (example manufacturers are Xsens and In-

terSense). As they are based on natural physical phenomenonand do not require any special

instrumentation of the environment, they are well suited tooutdoor AR. However, technical

specifications given by manufacturers indicate a< 1o RMS accuracy for the most recent

products, which is unfortunately still insufficient to obtained convincing augmented scenes.

In this section, we present accuracy tests we performed on a particular inertial sensor

(the Xsens MT9-B), in order to assess the accuracy of this kind of sensors, and check if a

Gaussian distribution is well suited to describe the errorswe obtain on the provided Euler

angles. In these experiments, the sensor was fixed on a computer controlled pan-tilt unit

(PTU), whose resolution was0.013o. Three sets of tests were performed, changing for each
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set the alignment between the sensor and the PTU axes (two configurations are presented in

Fig. 1).

For each configuration, rotation commands of different amplitudes (2, 5, 10, 15 and

20 degrees) were individually sent to each axis of the PTU (1000 rotations per amplitude

and per axis). Means and standard deviations of the values provided by the sensor and his-

tograms of the centered values are shown in figure 1. As the sensor and PTU axes were

not perfectly aligned, the means we obtain for each amplitude are not exactly equal to the

requested amplitudes. However, two major information can be inferred from these results:

1. the accuracy of the angles provided by the sensor does not significantly depend on the

amplitude of the rotation and 2. the accuracy of the angles obtained around a particular

axis of the sensor depends on the initial orientation of thisaxis with regard to the PTU. For

example, angles aroundx-axis are much more accurate in configuration 1 than in configu-

ration 2. Actually, the vertical axis (with regard to the earth) of the sensor always provides

less accurate results than the horizontal axis. This is due to the fact that magnetometers that

compensate the gyroscopes drift around the vertical axis are less accurate than accelerome-

ters that compensate the drift around non vertical axes. Indeed, magnetometers are sensitive

to ferromagnetic perturbations of the environment, whereas accelerometers are based on the

gravitational axis which is more reliable.

In practical situations, the sensor is fixed horizontally onthe camera, so that thez-axis is

initially up. In this situation, we expect a 3D Gaussian noise whose mean is null and standard

deviations deduced from our sets of tests (namely,σz = 0.499o andσx = σy = 0.155o).
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During the tracking process, standard deviations are interpolated online according to the

angles between the related axes and thez-axis of the sensor in its initial orientation.

3 Camera-sensor collaboration

3.1 Hand-eye calibration

Integrating sensor data in vision-based camera tracking first requires that the alignment be-

tween the sensor and the camera is known. Formally, this consists of finding a rotation

matrix X that permits to deduce camera rotationsB from sensor rotationsA (Fig. 2), ac-

cording to the following equation:

AX = XB (1)

The hand-eye calibration task consists of determining matrix X from this equation, applied

to several pairs of matricesA andB (three at minimum), obtained from different orientations

of the camera-sensor device. Many methods have been proposed to solve the generated set

of equations. In this work we use the method proposed by Park and Martin [12].

3.2 Integration strategy

Our strategy for integrating sensor data in vision-based tracking rests on the fact that the vi-

sion based system gives accurate position estimation [3] except when non-systematic events

such as head motions occur. The sensor is then used to providethe vision system with a
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fair prediction of the tracked features despite the occurrence of abrupt motions. Hence we

do not fuse sensor and vision data. Sensor data are only use toguide and to reinitialize the

vision process

We do not make a systematic use of the sensor data because their relatively poor accuracy

may lead to incorrect pose estimation. The following example illustrates that point: the99%

confidence limit of the sensor angle distribution error observed in section 2 for thez-axis

is equal to2.58 × σz = 1.29o. This corresponds to an horizontal image error of 23 pixels

(at the principal point) for a typical focal length of 1024 pixels. This may have different

consequences, depending on how the sensor is used: if sensordata are used systematically

to provide the rotational part of the camera motions, this will induce very inaccurate and

jittering augmentations; if sensor data are used systematically to predict the position of the

features from their positions in the previous image, tracking will fail in 1% of the cases for

a typical 20 pixels half-size research window, that is everyfive seconds in mean for a 20 fps

process.

Another reason for the non systematic use of the sensor is theneed to synchronize sensor

and vision acquisition to perform hybrid estimation. As noticed in [5], accurate synchroniza-

tion is needed especially when large motion may occur in the sequence. Indeed, approximate

synchronization may lead to associate a large motion predicted by the sensor to a wrong im-

age, making the system fail. However, experiments reportedin section 4 proved that the

synchronization delay is not constant over time and must be estimated online, inducing ad-

ditional processing time: the computation time of the vision based camera tracking depends
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on caracteristics of each frames, and this variable time needs to be synchronized with data

acquisitions of the inertial sensor. Hence, due to real-time constraints, non-systematic use

of the sensor appear as the most appropriate cooperation framework between vision and

sensor.

3.3 Sensor-based feature prediction

This paragraph explains how to integrate inertial sensor data to guide the feature tracking

process, after an abrupt camera rotation occurred (which corresponds to the common case

of rapid head motions). However, the results presented below can most of the time be

adapted to any kind of motion, providing that the appropriate sensor is used and its accuracy

quantified.

When a camera rotation occurs, the whole image is transformed according to a3 × 3

matrixH calledhomography, given by [13]:

H = KBK−1, (2)

whereK is the camera intrinsic parameters matrix andB the rotation matrix. This means

that a pixel at positionm in the previous frame appears at positionm′ = Hm in the new

frame (m andm′ are homogeneous coordinate vectors).

Therefore, combining equations (1) and (2) yields a function p which, assuming a sensor

rotation matrixA is known, provides a prediction of the new position of any pixel m at
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coordinates:

p(m) = KX tAXK−1m. (3)

3.4 Error propagation

In addition of these predicted feature positions, our method provides optimal research re-

gions. These regions are confidence ellipses that are obtained by propagating sensor errors

during the calibration and acquisition processes.

Sensor error analysis yields a covariance matrix of the provided parameters: for the

inertial sensor, we get a covariance matrix of the Euler anglesαA, βA, γA:

ΣA =
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(inter-axes covariances have proven negligible in our experiments). This matrix is used

to recover the covariance matrixΣX using error propagation from the hand-eye equation

(computation details are given in appendix). For a predicted positionm′ = p(m), we can

therefore compute a covariance matrixΣm′ using the following linear approximation:

Σm′ = JX/mΣXJ t
X/m + JA/mΣAJ t

A/m,

where

JA/m =
(

∂p
∂αA

∂p
∂βA

∂p
∂γA

)

,

JX/m =
(

∂p
∂αX

∂p
∂βX

∂p
∂γX

)
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(camera intrinsic parameters are supposed exact and computed before the AR application).

This provides a confidence ellipse aroundm′, defined by equation

X tΣ−1

m′ X ≤ 9.21, (4)

9.21 being the99% confidence limit for a two degrees of freedom chi-square.

4 Online synchronization

To check and determine the synchronization delay between these two devices, we first im-

plemented a procedure based on abrupt motion detection. Several abrupt motions where

performed in a same shoot of a scene that allows easy detection of visual motions (Fig. 5.b).

Abrupt changes in rotation angles were matched to abrupt changes in image intensities dis-

tribution (a criterion is proposed by Prager in [14] in the context of the temporal calibration

of a freehand ultrasound probe). These experiments made obvious that the synchronization

delay between the two devices is not constant over time (see Fig. 3, where three successive

abrupt motions were applied in a same shoot and lead to non constant acquisition delay).

This means that synchronization of the two devices must be performed online.

In our set-up, sensor data are always available before imagedata. Indeed, the time

needed to capture a video frame (here referred to asacquisition cycle) is large compared to

the time needed to sample information from the inertial sensor. For each acquisition cycle,

the relative sensor data acquired during the cycle are composed and allow us to compute the

sensor homography, that is the homography computed from the sensor during an acquisition
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cycle. These homographies will be used to guide feature tracking when the vision-based

system fails.

The underlying ideas of our algorithm are explained on a synthetic example (Fig. 4).

Three main steps are needed to perform on line synchronization:

Identification of the vision based system failure

A decrease in the number of inliers (i.e number of points successfully matched by the sys-

tem) is a good mean to detect that the vision system is going tofail. Non successful matching

is generally due to the fact that the corresponding point is outside the research window and is

thus not detected by the system. The number of inliers is especially relevant for planar-based

system because tracking planar structures can be made very robust due to homographic con-

straints [13]. In our example, this number decreases drastically in frame 11, which means

that sensor information is required in that frame.

Identification of the corresponding sensor data

Once a tracking failure has been detected, the corresponding sensor homography has to

be identified. The principle of our method is to simulate the propagation of the features

obtained just before failure, using each buffered sensor homography, and choose the one

that makes the matching process fail.

In the visual system, matching fails when the researched feature lies outside the research

region. Hence, the corresponding sensor data will also giverise to a predicted point that is
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outside the research window. Our procedure amounts to choose the homography that makes

the number ofsensor-predicted inliers (features that are propagated inside the research re-

gion) decrease dramatically. In our example, this allows usto identify at buffer position 3

the inertial data that correspond to the visual tracking failure. It must be noted that another

possibility for sensor data identification may consist in detecting abrupt variations in the

acquired angles. Unfortunately, this criterion is not relevant as the effect of angles varia-

tions on the images also depends on the depth of the scene and on the camera position with

respect to the scene. As a result, some abrupt motion of the camera can be perfectly handled

by the vision-based system while others cannot be handled.

Use of the inertial data to re-initialize the matching stage

Once the corresponding sensor homography has been identified at positionp in the storing

buffer, inertial data can be used to re-initialize the matching stage. To this aim, homogra-

phies in the buffer are considered from positionp, and the matching process is tried using

the accumulated homography. Accumulating homographies isnecessary as a rapid rotation

may last more than one acquisition cycle.

5 ARIS tracking system

The goal of the ARIS project was to provide new and innovativeAR-technologies for e-

(motion)-commerce application, where the products can be presented in the context of their
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future environment. A mobile AR-unit was developed, where 3D product models (e.g. fur-

niture) can be directly visualized on a real site, taking consistent geometry and illumination

of real and virtual objects into account. The user can check the aesthetic result and the ac-

tual fit of the furniture item into the room, and also discuss with remote participants, taking

shared augmented technologies into account. This section describes parts of the system that

concern pose computation and interaction with the environment. Results of the complete

tracker obtained on a reald-world scene are shown in figure 5.A complete video (called

VIDEO1) is provided on our web site1.

Camera tracking

Our collaborative tracking system is based on the vision-based method we proposed in [9]:

key-points belonging to planar surfaces are tracked in consecutive images, providing homo-

graphies that enable to update the pose (assuming the equations of the planes are known).

False matches are identified using the RANSAC paradigm (Fig.5.(a)), and sensor data are

incorporated according to the method presented in this paper. This results in a robust system

where the user is able to move with increased freedom. Tracking is performed at 15 fps

on a classical laptop and web-cam configuration. The hand-eye calibration is performed by

shooting a calibration target from different views. Markers are placed on the target in order

to automate the calibration process (Fig. 5.(b)).

1http://www.loria.fr/equipes/magrite/movies/cavw.html
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Reconstruction of the scene geometry

The geometry of the scene is needed both for tracking and for handling photometric and

geometric interactions between real and virtual objects. This geometry is acquired offline

from a single image of the scene with the help of an interactive reconstruction tool. Intrinsic

parameters and the initial camera pose are recovered from a poster laid in a corner of the

room (Fig. 5.(c)).

Interaction with the environment

As camera poses are computed with respect to a world reference frame, synthetic objects can

be added in the real scene at any time of the tracking process (Fig. 5.(d-f)). These objects

can easily be placed in the real scene by sliding them on the recovered structure, mutual

occlusions and collisions between real and virtual objectsbeing automatically handled.

6 Results

6.1 Synthetic data

In order to assess the relevance of using confidence ellipsesinstead of rectangle research

windows, we simulated thousands of hand-eye calibrations and camera / sensor rotations,

adding a Gaussian noise to sensor data (standard deviationswere taken as explained in

section 2). A relevant research region is a region that maximizes the probabilityP (inlier)

of getting the researched corresponding feature inside theregion, while minimizing the
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number of non corresponding features#outliers included in that region. These values were

computed using rectangle research regions of different sizes and ellipses corresponding to

different confidence limits in equation (4). Figure 6 gives the evolution of#outliers in

function of P (inlier), for different numbers of point featuresn, randomly chosen inside

a 512 × 512 frame: the curve corresponding to elliptic regions is generally significantly

below the curve corresponding to squared regions. For example, a typical 20 pixels half-

size research window yields to a mean number of 12 outliers for 2000 points in a512× 512

image. Using elliptic research regions with the same value of P (inlier) reduces the number

of expected outliers to 9 (25% less). This reduction is significant as it decreases the riskof

ambiguity as well and the computation time needed for the matching process.

6.2 Real sequences

Figure 7.(a) shows the number of inlier correspondences we obtained in a miniature scene

sequence (see VIDEOS2 on our web site). Video tracking-lessperiods are indicated using

dashed bars. They correspond to abrupt motions that are all well handled using sensor

information. The numbers of sensor-predicted inliers computed using the buffered sensor

homographies at frame 173 are shown in figure 7.(b). This illustrates the relevance of using

this criterion for online synchronization (a fall is clearly observed at position 1) instead of

the sensor rotation amplitude criterion which is less discriminant (Fig. 7.(c)).

Tracking was also performed on real-size scenes (see our website, VIDEOS 3 and 4).
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The first one was shot in the basement of our laboratory (Fig. 8). A user made free mo-

tions inside the room, and virtual furnishings were added online. Ten abrupt motions were

detected and well handled during this process. The second sequence concerns an outdoor

scene that was shot from a camera put on a tripod (Fig. 9) : in that configuration, the whole

image is transformed according to a homography. Sensor information was successfully used

at thirteen moments of that sequence.

7 Conclusion

We presented a hybrid approach for AR registration with integrated inertial and vision tech-

nologies. The complete AR system was successfully demonstrated in unprepared multi-

planar environments. Our framework brings significant improvements to the AR system

by increasing the freedom of the user during the application. Furthermore, our AR system

requires no specific or expensive hardware and can be used with an ordinary laptop and a

simple webcam.

Unlike existing approaches, we dot not attempt to perform fusion of the two technolo-

gies at each frame of the sequence. On the contrary, we restrict the use of each sensor for

situations where its contribution is relevant. As a result,we use sensor information only

when needed, that is when the pure vision-based system failsto track the camera. In ad-

dition, sensor errors are measured and taken into account inthe feature matching process.

Finally, we address the camera/sensor synchronization problem and propose a method to
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resynchronize these two devices online.

There are several improvements and extensions that can be made to our approach. First,

the use of an inertial sensor only allows us to consider abrupt rotational motions, as head

motions. If more general motions including a large translation part have to be considered,

our method can be extended to the use of a position sensor. Second, extensions of the method

should concern the vision based system. For numerous pose algorithms as ours, the pose

computation process is incremental and may progressively diverge because of successive

approximations. Markers, natural features or key-views inthe scene could be used to detect

system divergences and reinitialize the tracking when necessary.

Appendix: Error propagation in hand-eye calibration

Hand-eye matrixX is solution of the set of equations

AiX = XBi, (5)

where (Ai, Bi) are n sensor/camera rotation pairs. Our aim is to compute a covariance

matrix ΣX of the Euler anglesαX , βX , γX of matrix X, considering that camera rotations

Bi are certain but sensor rotationsAi uncertain.

Equations (5) can be written asf(x, a) = 0, wherex is a vector of size 3 containing the

Euler angles of rotationX, a is a vector of size3n containing the Euler angles of rotations
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Ai, and0 is a9n null vector. A first order approximation off(x, a) gives:

f(x, a) +
∂f

∂x
(x, a) (x − x) +

∂f

∂a
(x, a) (a − a) ≈ 0,

wherea andx are the estimated values ofa andx. This leads to:

CΣXCt = D [ΣA] Dt,

whereC = ∂f
∂x

(x, a), D = ∂f
∂a

(x, a) and [ΣA] is the3n × 3n matrix











ΣA 0

ΣA

...

0 ΣA











.

Therefore,ΣX can be expressed as:

ΣX = (CtC)−1CtD [ΣA] DtC(CtC)−1.
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Figure 1: Precision results obtained over the three axes of the Xsens MT9-B inertial sensor

according to its absolute orientation.

Figure 2: Hand-eye transformation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Tracking and interaction in the ARIS system. (a) Camera tracking: green segments

join the corresponding key-points between the current and the previous frame. Red segments

are used to show outlier correspondences. (b) The hand-eye calibration is performed using

markers on a box. (c) Camera parameters and scene geometry are obtained using geometric

constraints from a single image. (d-f) Virtual objects are placed with regard to the recovered

structure of the scene, which enables online visualizationand interaction.
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Figure 7: (a) Number of inlier correspondences and tracking-less periods obtained in a

miniature scene sequence. (b),(c) Comparison of two synchronization criteria at frame 173

of that sequence.
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Figure 8: Example results obtained at two instants of an indoor sequence. Top: augmented

frames before an abrupt motion occurred. Middle: correspondences obtained by using sen-

sor predictions (white segments are inlier correspondences, black segment are outliers iden-

tified by RANSAC). Bottom: augmented scenes after the abruptmotion occurred.
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Figure 9: A sensor-guided tracking result obtained in an outdoor sequence. Top: frame 486

with a virtual cube added. Bottom: frame 488 and the recovered correspondences.
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