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Abstract

This paper describes an integrated system for build-
ing a multiplanar model of the scene as the camera is
localized on the fly. The core of this system is a robust
and accurate procedure for detecting the intersection
line between two planes. User cues are used to assist
the system in the mapping tasks. Synthetic results and
a long video demonstrate the relevance of the method.

1 Introduction

Recent years have seen the emergence of vision-
based algorithms for performing localization and map-
ping in unknown environments [3, 2, 6]. These tech-
niques tend to avoid the need of pre-calibrated envi-
ronments in real-time applications such as augmented
reality. However, they are still very sensitive to data-
association errors which can irretrievably corrupt the
maps generated by incremental systems.

The method we propose differs in several ways from
standard works. Firstly, we consider multiplanar envi-
ronments (urban or indoors) and aim at building planar
surfaces instead of clouds of points. Planar surfaces
are natural supports for objects insertion and are easy
to track when well textured [7]. Secondly, user cues
are used to assist the system in the mapping tasks and
visual information are provided to help him make in-
formed decisions about the scene.

The core of our system is an accurate and robust
procedure for detecting the projection of the intersec-
tion line between two planes based on their apparent
motion. Projections of the intersection lines are inter-
mediate results toward the Euclidean reconstruction of
the planes. Most of all, their computation can be visu-
ally assessed by the user, which is of great interest to
prevent map corruptions.

2 Preliminaries

We first set out some theoretical results that will be
useful. Suppose we have two images,I1 andI2, of a
scene consisting of two planes,π1 andπ2. We further
assume that the related homography matrices,H1 and
H2, from I1 to I2 also are known. Using the duality
between points and lines in the plane, we deduce from
[5] the following result.

Result 1. The3 × 3 matrix T = HT
1
H−T

2
is a ho-

mology, which admits a pencil of globally fixed lines
intersecting at the epipolee and a distinct fixed line
corresponding to the projectionl of the intersection line
betweenπ1 andπ2.

l is therefore the eigenvector associated to the simple
eigenvalue ofT. However, algebraic computations of
the eigenvectors ofT is very unstable in practice asT
is a non-symmetric matrix. Particle filtering will there-
fore be used to detectl from several subsequent images.
The following result will help to distinguish between
the two kinds of fixed lines:

Result 2. Any point on linel is fixed byTT while
any point on a line passing throughe is generally trans-
formed byTT to a distinct point on the same line.

The first assertion is straightforward. The second
one is illustrated in Fig. 1 (c1 andc2 are the camera
centers):p is generally distinct fromp′ = TT p, unless
π1 = π2 or p is on linel.

Figure 1. Fixed lines of the homology.
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Figure 2. Images of a synthetic sequence.

3 Particle filtering of the intersection line

We now assume we are able to compute several
pairs of homographiesHi

1
, Hi

2
betweenI1 and subse-

quent imagesIi. Temporal consistency can therefore
be exploited to get an accurate and robust computa-
tion of line l. We use particle filtering (PF) which is
a well known technique for implementing a recursive
Bayesian filter by Monte Carlo simulations [1]. The
key idea is to represent the required posterior density
functionp(xi|z1:i), wherez1:i is the set of all available
measurements up to timei, by a set of random samples
with associated weightswj

i , and to compute estimates
based on these samples and weights:

p(xi|z1:i) ≈

N
∑

j=1

wj
i δ(xi − x

j
i ),

N
∑

j=1

wj
i = 1. (1)

We implement the generic PF according to the frame-
work described in [1]. Resampling is used whenever a
significant degeneracy is observed (i.e., when the effec-
tive sample sizeNeff falls below some thresholdNt).
Our implementation has the following characteristics:

(i) particles are homogeneous coordinates of lines.
The first mode of distribution (1) is taken as the esti-
mated linel (in image 1) at timei. Initially, the parti-
cles are uniformly distributed inside the largest ellipse
E contained in the image (Fig.2, first frame);

(ii) the prior p(xi|xi−1) is the normal distribution
centered atxi−1 with covariance matrixV (V =
diag2([0.01, 0.01, 5]) in our experiments); the impor-
tance density is the prior;

(iii) the likelihood density at timei is given by:

p(zi|xi) = p(zg
i |xi)p(zp

i |xi),

wherezg
i andzp

i are (assumed independent) geometric
and (resp.) photometric measurements we now detail.

Geometric likelihood.Measuring “how fixed” a line
is when transformed byT provides a geometric mea-
sure of the likelihood of the related particle. In order
not to confuse between the two kinds of fixed lines of
T and according to Result 2, we actually measure the

fixity of some points on the line. In practice, we found
enough discriminant to measure the fixity of the inter-
section pointsp1 andp2 of the line with the ellipseE :

p(zg
i |xi) = exp

„

−
D2

2σ2
g

«

, D =
1

2

v

u

u

t

2
X

k=1

||z(pk) − z(TT pk)||2

where ||.|| denotes the L2 norm of a vector,
z

(

[x, y, z]T
)

= [x/z, y/z]T and σg = 3 in our ex-
periments.

Photometric likelihood.Accuracy and convergence
of the PF can be increased by also measuring the dis-
tance of the particles to the highest gradients of the im-
age. This is done by Sobel filtering, hysteresis thresh-
olding and lines detection using a fast Hough Trans-
form (HT). A significant pruning is obtained by com-
puting a single global HT updated from frame to frame
by transferring the line candidates of imagei to image
1, using the homographyHi

k

−T
, k = 1 ork = 2: doing

that, only the projections of the lines on planeπk con-
tribute to the local maxima of the HT (other lines are
transferred to unstable coordinates of the HT). Finally,
we keep the linesmj

i corresponding to theM greatest
local maxima of the HT (M = 100 in our experiments).
This leads to:

p(zp
i |xi) = exp

(

−
D2

2σ2
p

)

, D =
1

2

M

min
j=1

√

√

√

√

2
∑

k=1

(mj
i |pk)2, (2)

where(.|.) denotes the dot product,m
j
i is expressed un-

der the form[cos(θ), sin(θ),−ρ]T andσp = σg in our
experiments. This measure benefits from the robustness
of the HT and can therefore tolerate partial occlusions
of the intersection line.

4 Euclidean reconstruction

Knowing the projectionl in I1 of the intersection
line between two planesπ1 and π2 and a pair of re-
lated homographiesHi

1
andHi

2
allows to reconstruct

the planes in the view coordinate system. Here and in
the rest of the paper, we assume that the camera intrin-
sic parameters of the camera are known and the image
coordinates are affine-transformed using the inverse in-
trinsic matrix [4].

When the equation of one plane (sayπ1) and the
camera motionR, t betweenI1 andIi are known, com-
putation ofπ2 is straightforward: as shown in Fig. 1,
π2 belongs to a sheaf of planes passing through the
3D intersection line betweenπ1 and the plane pass-
ing throughl and the camera centerc1. This is alge-
braically expressed as:

Π2 = Π1 + λ[lT 0]T (3)
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whereΠ1 = [nT
1
, d1]

T andΠ2 = [nT
2
, d2]

T are the
equation vectors of the planes expressed in the first
view coordinate system. In the common case where
π2 is orthogonal toπ1, we directly obtainΠ2 using
λ = −1/(n1|l). In the general case,λ can be deter-
mined performing a 1-parameter LMS optimization of
the transfer error ofn ≥ 4 pointsvi onπ2 (for instance,
the vertices of the planar region). Indeed, any value ofλ
induces a homographyH(λ) = d2(λ)R+tn2(λ)T [4],
providing transfer errors||z (H(λ)vi) − z (H2vi) ||.

When no information is available about the camera-
planes geometry, structure and motion are computed
using a higher degree optimization that requires an ini-
tial estimate. It is shown in [4] that the simultaneous
estimate of the camera motion and the plane pose cor-
responding to a homography has in general two physi-
cal solutions which can be obtained using SVD. As we
know two homographies, this twofold ambiguity can
be removed by finding the common solution for cam-
era motion: this provides initial values forR, t and
the structuren1,n2, d2 of the planes (d1 determines
the scale of the scene and is set to the assumed value
of the height of the camera inI1). These values are
then refined performing a 9 or 8-parameters optimiza-
tion (parameters areR, t,n1 andλ when the angle be-
tweenπ1 andπ2 is unknown) of the transfer error of
n ≥ 4 points onπ1 andm ≥ 4 points onπ2 using the
Levenberg-Marquardt algorithm. It is shown in section
5 that a 9-parameter optimization converges faster and
more accurately than a 11-parameter optimization that
does not handle the knowledge of linel.

5 Synthetic results

Filtering parameters.Synthetic tests have been per-
formed in order to assess the effects of the number
of particlesN and the resampling thresholdNt over
the convergence of the PF. A 80-frame sequence was
used in which the camera followed a circular path while
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Figure 3. Convergence of the PF.
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Figure 4. Structure and motion errors.

pointing toward a horizontal and a vertical plane (Fig.
2). A Gaussian noise of standard deviation 0.3 was
added to the coordinates of the points used to compute
the inter-image homographies. Fig. 2 shows examples
of particle distributions obtained in three images of the
sequence. Figure 3 shows the mean number of frames
(over 100 tests) needed to reach the convergence, for
N varying from 20 to 1000 andNt from 0 toN . The
convergence is always reached, even for small values of
N (except forNt = 0 due to the degeneracy problem).
However, the convergence is faster for high values of
N and whenNt is closer toN . These results led us to
useNt = N = 1000 in our real experiments.

Euclidean reconstruction.Figure 4 shows the errors
obtained on the normal to the horizontal plane and the
x-coordinate of the camera translation when comput-
ing structure and motion between the first frame of the
synthetic sequence and the next 50 frames. Errors are
shown for the SVD, the 11-parameters optimization and
the 9-parameters optimization (in that case the intersec-
tion line is extracted from a HT in the first frame). This
graphic shows that the 9-parameters optimization can
substantially improve the accuracy, especially when the
baseline is small (except for too small baselines which
lead to unstable results). Moreover, the mean number
of iterations of the Levenberg-Marquardt algorithm is
3.9 for the 9-parameters optimization, against 6.7 for
the 11-parameters optimization.

6 On-the-fly map building

The previous theoretical results have been used to
design an integrated system for building a multiplanar
model of the scene as the camera is localized on the fly.
The main characteristic of this system is that the user
is able to assist the mapping tasks. In particular, visual
assessments of the filtered intersection lines greatly re-
duce map corruptions. An intuitive interface controlled
by only four keys is used to define blobs, indicate the
PF convergence, and validate or invalidate the initial
and further Euclidean reconstructions. All these inter-
actions can be done on the fly while the camera is mov-
ing. As no mouse interaction is needed, the interface
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Figure 5. On-the-fly map building.

is particularly well adapted to applications of AR that
run on modern devices such as PDA or mobile phones
equipped with digital cameras.

A “ground and wall” type of scene is considered:
two circles are displayed, one on the bottom half and
the other on the top half of the screen, that allow the
user to “capture” blobs on the ground plane and (resp.)
the vertical planes (see Fig. 5, top frame). These blobs
are tracked using the method presented in [7]. Initially,
planes poses and camera motion are computed from a
vertical and a horizontal blob by filtering their intersec-
tion line and performing the SVD + 8-parameters opti-
mization. Then the camera pose is updated in real time
using the existing planes in the map. When a new hor-
izontal blob is defined, it is back-projected using the
known equation of the horizontal plane in the camera
coordinate system. When a new vertical blob is de-
fined, the intersection line with the ground plane is fil-
tered. If this line is aligned with another intersection
line in the map, merging with the related plane is pro-
posed. Otherwise, a new blob is added to the map using
equation (3). Keyframes with SIFT features are saved
during the process and these are used upon user request
for global relocalization of the camera and bundle ad-
justments of the poses of all the planes in the map (in
the spirit of [6]).

This system has been used in a two-room scene (Fig.
5). Computation rates were about 12 Hz in tracking
mode and 8 Hz in tracking + filtering mode on a PC
Dell Precision 390, 2.93 Ghz. A hand-held Sony cam-
era DFW-VL500 was used at resolution 320x240. The

#frame NK NB Event Error angles (deg)
(1,2) (1,3) (1,4) (1,5)

675 3 3 P2 added -10.3
891 7 3 Bundle (0.3 s) 1.5

2710 14 10 P3 added 1.5 -1.5
2954 16 11 P4 added 1.5 -1.5 12.6
5648 17 12 P5 added 1.5 -1.5 12.6 7.2
7842 18 13 Bundle (2.1 s) 0.9 -3.2 0.6 7.3

Table 1. Error angles between the planes.

session lasted about 10 minutes: a video is associated
to the paper1 showing the most interesting parts of this
session. 13 blobs on 6 different planes were defined and
successfully reconstructed. Virtual objects were auto-
matically added on the middle of each blob. As one
can see in the video, these appear firmly anchored in
the scene, and camera tracking performs well despite
erratic motions of the hand-held camera. Table 1 shows
the error angles obtained between the first vertical plane
added to the map and the other vertical planes (plane
numbers are those shown in the video).

7 Conclusion

We presented a method for tracking and mapping in
multiplanar environments, which has been validated on
both synthetic and real-size (spatially and temporally)
experiments. This method may be extended to allow
detection and reconstruction of other kinds of features
like the edges of the scene. Using the system in larger
environments (a complete level of a building for in-
stance) would also require improvements: in order to
keep a reasonable rate of exploration, the system should
be allowed to perform local bundle adjustments as in
[6].
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